Ranking of Fuzzy Numbers, Some Recent and New Formulas

Ranking of fuzzy numbers plays a very important role in linguistic decision making and some other fuzzy application sys- tems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non- intuitive results in certain cases. In this paper, some new approaches for ranking of trapezoidal fuzzy numbers are introduced. Keywords— Magnitude of fuzzy number, Parametric form of fuzzy number, Ranking of fuzzy numbers, Trapezoidal fuzzy num- ber.

[1]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[2]  Saeid Abbasbandy,et al.  The nearest trapezoidal form of a generalized left right fuzzy number , 2006, Int. J. Approx. Reason..

[3]  Abraham Kandel,et al.  A new approach for defuzzification , 2000, Fuzzy Sets Syst..

[4]  Abraham Kandel,et al.  Correction to "A new approach for defuzzification" [Fuzzy Sets and Systems 111 (2000) 351-356] , 2002, Fuzzy Sets Syst..

[5]  T. Chu,et al.  Ranking fuzzy numbers with an area between the centroid point and original point , 2002 .

[6]  R. Yager ON CHOOSING BETWEEN FUZZY SUBSETS , 1980 .

[7]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[8]  Saeid Abbasbandy,et al.  The nearest approximation of a fuzzy quantity in parametric form , 2006, Appl. Math. Comput..

[9]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[10]  Gisella Facchinetti,et al.  A characterization of a general class of ranking functions on triangular fuzzy numbers , 2004, Fuzzy Sets Syst..

[11]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[12]  Abraham Kandel,et al.  A new fuzzy arithmetic , 1999, Fuzzy Sets Syst..

[13]  Saeid Abbasbandy,et al.  Note on "A new approach for defuzzification" , 2002, Fuzzy Sets Syst..

[14]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[15]  Saeid Abbasbandy,et al.  Ranking of fuzzy numbers by sign distance , 2006, Inf. Sci..

[16]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[17]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[18]  Jing-Shing Yao,et al.  Ranking fuzzy numbers based on decomposition principle and signed distance , 2000, Fuzzy Sets Syst..

[20]  Shan-Huo Chen Ranking fuzzy numbers with maximizing set and minimizing set , 1985 .

[21]  Huibert Kwakernaak,et al.  Rating and ranking of multiple-aspect alternatives using fuzzy sets , 1976, Autom..

[22]  Ramesh Jain,et al.  DECISION MAKING IN THE PRESENCE OF FUZZY VARIABLES , 1976 .

[23]  J. Baldwin,et al.  Comparison of fuzzy sets on the same decision space , 1979 .

[24]  William Voxman,et al.  Some remarks on distances between fuzzy numbers , 1998, Fuzzy Sets Syst..

[25]  Y. Ku,et al.  Introduction to fuzzy arithmetic—theory and applications : Arnold Kaufmann and Madan M. Gupta. 351 pages, diagrams, figures. Van Nostrand Reinhold Company, New York, 1985. , 1986 .

[26]  F. Choobineh,et al.  An index for ordering fuzzy numbers , 1993 .

[27]  G. Bortolan,et al.  A review of some methods for ranking fuzzy subsets , 1985 .

[28]  Saeid Abbasbandy,et al.  A new approach for ranking of trapezoidal fuzzy numbers , 2009, Comput. Math. Appl..

[29]  Ching-Hsue Cheng,et al.  A new approach for ranking fuzzy numbers by distance method , 1998, Fuzzy Sets Syst..

[30]  Saeid Abbasbandy,et al.  A new approach to universal approximation of fuzzy functions on a discrete set of points , 2006 .

[31]  Caro Lucas,et al.  A NEW METHOD FOR RANKING OF FUZZY NUMBERS THROUGH USING DISTANCE METHOD , 2003 .

[32]  Caroline M. Eastman,et al.  Review: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[33]  Liang-Hsuan Chen,et al.  An approximate approach for ranking fuzzy numbers based on left and right dominance , 2001 .