New Bounds for Frameproof Codes

Frameproof codes are used to fingerprint digital data. They can prevent copyrighted materials from unauthorized use. In this paper, we study upper and lower bounds for <inline-formula> <tex-math notation="LaTeX">$w$ </tex-math></inline-formula>-frameproof codes of length <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> over an alphabet of size <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>. The upper bound is based on a combinatorial approach and the lower bound is based on a probabilistic construction. Both bounds can improve one of the previous results when <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is small compared with <inline-formula> <tex-math notation="LaTeX">$w$ </tex-math></inline-formula>, say <inline-formula> <tex-math notation="LaTeX">$cq\leq w$ </tex-math></inline-formula> for some constant <inline-formula> <tex-math notation="LaTeX">$c\leq q$ </tex-math></inline-formula>. Furthermore, we pay special attention to binary frameproof codes. We show a binary <inline-formula> <tex-math notation="LaTeX">$w$ </tex-math></inline-formula>-frameproof code of length <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> cannot have more than <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> codewords if <inline-formula> <tex-math notation="LaTeX">$N<\binom {w+1}{2}$ </tex-math></inline-formula>.

[1]  Simon R. Blackburn Frameproof Codes , 2003, SIAM J. Discret. Math..

[2]  Simon R. Blackburn,et al.  An upper bound on the size of a code with the k-identifiable parent property , 2003, J. Comb. Theory, Ser. A.

[3]  Douglas R. Stinson,et al.  Combinatorial Properties and Constructions of Traceability Schemes and Frameproof Codes , 1998, SIAM J. Discret. Math..

[4]  Dan Boneh,et al.  Collusion-Secure Fingerprinting for Digital Data , 1998, IEEE Trans. Inf. Theory.

[5]  Douglas R. Stinson,et al.  A bound on the size of separating hash families , 2008, J. Comb. Theory, Ser. A.

[6]  S. Wei Secure Frameproof Codes, Key Distribution Patterns, Group Testing Algorithms and Related Structures , 1997 .

[7]  Yeow Meng Chee,et al.  Improved Constructions of Frameproof Codes , 2012, IEEE Transactions on Information Theory.

[8]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[9]  Douglas R. Stinson,et al.  On generalized separating hash families , 2008, J. Comb. Theory, Ser. A.

[10]  Minquan Cheng,et al.  On Anti-Collusion Codes and Detection Algorithms for Multimedia Fingerprinting , 2011, IEEE Transactions on Information Theory.

[11]  Tran van Trung A tight bound for frameproof codes viewed in terms of separating hash families , 2014, Des. Codes Cryptogr..

[12]  Tran van Trung,et al.  Bounds for separating hash families , 2011, J. Comb. Theory, Ser. A.

[13]  Joseph A. Thas,et al.  In: Handbook of Incidence Geometry: Buildings and Foundations , 1995 .

[14]  Douglas R. Stinson,et al.  Secure frameproof codes, key distribution patterns, group testing algorithms and related structures , 2000 .

[15]  Tuvi Etzion,et al.  Traceability codes , 2009, J. Comb. Theory, Ser. A.

[16]  Dan Collusion-Secure Fingerprinting for Digital Data , 2002 .

[17]  Noga Alon,et al.  New Bounds on Parent-Identifying Codes: The Case of Multiple Parents , 2004, Combinatorics, Probability and Computing.

[18]  Douglas R. Stinson,et al.  On tight bounds for binary frameproof codes , 2015, Des. Codes Cryptogr..