Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution

[1]  Guowei Yang,et al.  Hydrogen-interstitial CuWO4 nanomesh: A single-component full spectrum-active photocatalyst for hydrogen evolution , 2018, Applied Catalysis B: Environmental.

[2]  M. Sillanpää,et al.  Insights into the generation of reactive oxygen species (ROS) over polythiophene/ZnIn2S4 based on different modification processing , 2018 .

[3]  Yue Tian,et al.  RETRACTED ARTICLE: Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K , 2018, Nature Communications.

[4]  Yumei Ren,et al.  Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances. , 2017, Chemistry, an Asian journal.

[5]  Dawei Wang,et al.  Boosting Hot Electrons in Hetero-superstructures for Plasmon-Enhanced Catalysis. , 2017, Journal of the American Chemical Society.

[6]  R. Mata,et al.  Pairwise H2/D2 Exchange and H2 Substitution at a Bimetallic Dinickel(II) Complex Featuring Two Terminal Hydrides. , 2017, Journal of the American Chemical Society.

[7]  E. Kowalska,et al.  On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems , 2017 .

[8]  M. Dupuis,et al.  Amorphous Cobalt Oxide Nanoparticles as Active Water‐Oxidation Catalysts , 2017 .

[9]  Tak W. Kee,et al.  A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride , 2017 .

[10]  Huibo Wang,et al.  Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting , 2017 .

[11]  P. Ajayan,et al.  High Efficiency Photocatalytic Water Splitting Using 2D α‐Fe2O3/g‐C3N4 Z‐Scheme Catalysts , 2017 .

[12]  I. Hussain,et al.  Controlled Synthesis of TiO2 Nanostructures: Exceptional Hydrogen Production in Alcohol-Water Mixtures over Cu(OH)2–Ni(OH)2/TiO2 Nanorods , 2017 .

[13]  Y. Nosaka,et al.  Generation and Detection of Reactive Oxygen Species in Photocatalysis. , 2017, Chemical reviews.

[14]  K. Domen,et al.  Particulate photocatalysts for overall water splitting , 2017 .

[15]  Zhongbiao Wu,et al.  Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis , 2017 .

[16]  H. Hosono,et al.  Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications , 2017 .

[17]  G. Yang,et al.  External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly , 2017 .

[18]  C. Tung,et al.  Self‐Assembled Au/CdSe Nanocrystal Clusters for Plasmon‐Mediated Photocatalytic Hydrogen Evolution , 2017, Advanced materials.

[19]  Zhenyi Zhang,et al.  A Nonmetal Plasmonic Z‐Scheme Photocatalyst with UV‐ to NIR‐Driven Photocatalytic Protons Reduction , 2017, Advanced materials.

[20]  Shangfeng Yang,et al.  Black Phosphorus Revisited: A Missing Metal‐Free Elemental Photocatalyst for Visible Light Hydrogen Evolution , 2017, Advanced materials.

[21]  T. Venkatesan,et al.  Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate , 2016, Nature Communications.

[22]  Li-li Yu,et al.  Modifying photocatalysts for solar hydrogen evolution based on the electron behavior , 2017 .

[23]  G. Ouyang,et al.  Lattice Strain Effect on the Band Offset in Single-Layer MoS2: An Atomic-Bond-Relaxation Approach , 2017 .

[24]  L. James Wright,et al.  Cover Picture: A Metallaanthracene and Derived Metallaanthraquinone (Angew. Chem. Int. Ed. 1/2017) , 2017 .

[25]  Wei Liu,et al.  CO2 -Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances. , 2017, Angewandte Chemie.

[26]  C. V. Singh,et al.  Self-Trapped Charge Carriers in Defected Amorphous TiO2 , 2016 .

[27]  Liang Li,et al.  Ultrathin Amorphous Ni(OH)2 Nanosheets on Ultrathin α‐Fe2O3 Films for Improved Photoelectrochemical Water Oxidation , 2016 .

[28]  Michael J. McClain,et al.  Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts. , 2016, Nano letters.

[29]  Ewa Kowalska,et al.  Silver- and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst , 2016 .

[30]  Chengxin Wang,et al.  A Floating Sheet for Efficient Photocatalytic Water Splitting , 2016 .

[31]  Baibiao Huang,et al.  Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances. , 2016, Journal of the American Chemical Society.

[32]  Chengxin Wang,et al.  Nanodiamond‐Embedded p‐Type Copper(I) Oxide Nanocrystals for Broad‐Spectrum Photocatalytic Hydrogen Evolution , 2016 .

[33]  Michael J. McClain,et al.  Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation. , 2016, Nano letters.

[34]  Xiaobo Chen,et al.  Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction , 2015 .

[35]  Xiuli Wang,et al.  Photo-induced H2 production from a CH3OH-H2O solution at insulator surface , 2015, Scientific Reports.

[36]  Zijun Sun,et al.  Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts , 2015 .

[37]  Hui‐Ming Cheng,et al.  An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visible‐Light‐Responsive Range for Photocatalytic Hydrogen Generation , 2015, Advanced materials.

[38]  D. Sun-Waterhouse,et al.  Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures , 2015 .

[39]  Tao Wang,et al.  In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2 , 2015 .

[40]  L. H. Li,et al.  Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes , 2015 .

[41]  Liang-Hong Guo,et al.  Switching Oxygen Reduction Pathway by Exfoliating Graphitic Carbon Nitride for Enhanced Photocatalytic Phenol Degradation. , 2015, The journal of physical chemistry letters.

[42]  K. Xie,et al.  The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: Effect of amorphous NiO formation , 2015 .

[43]  Jinlong Gong,et al.  Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting , 2015, Advanced materials.

[44]  Xing Zhang,et al.  Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway , 2015, Science.

[45]  Jiaguo Yu,et al.  Engineering heterogeneous semiconductors for solar water splitting , 2015 .

[46]  Huanjun Chen,et al.  Fabrication of Si/Au Core/Shell Nanoplasmonic Structures with Ultrasensitive Surface-Enhanced Raman Scattering for Monolayer Molecule Detection , 2015 .

[47]  J. Callahan,et al.  Predicting and identifying reactive oxygen species and electrons for photocatalytic metal sulfide micro-nano structures , 2014 .

[48]  E. Longo,et al.  A DFT Study of Structural and Electronic Properties of ZnS Polymorphs and its Pressure-Induced Phase Transitions , 2014 .

[49]  Say Chye Joachim Loo,et al.  Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion , 2014 .

[50]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[51]  Tarek A. Kandiel,et al.  Long-term investigation of the photocatalytic hydrogen production on platinized TiO2: an isotopic study , 2014 .

[52]  J. Jang,et al.  Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications , 2014 .

[53]  W. Harman,et al.  A d(10) Ni-(H(2)) adduct as an intermediate in H-H oxidative addition across a Ni-B bond. , 2014, Angewandte Chemie.

[54]  S. Agnoli,et al.  Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys. , 2014, Nanoscale.

[55]  J. Narayan,et al.  Crystallographic Characteristics and p-Type to n-Type Transition in Epitaxial NiO Thin Film , 2013 .

[56]  Xiaoming Xie,et al.  H‐Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance , 2013 .

[57]  D. Bahnemann,et al.  Undesired Role of Sacrificial Reagents in Photocatalysis , 2013 .

[58]  Curtis P. Berlinguette,et al.  Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. , 2013 .

[59]  Feng Huang,et al.  Noble metal-free Ni(OH)2–g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity , 2013 .

[60]  Yexiang Tong,et al.  Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials , 2013, Nature Communications.

[61]  Zhipan Zhang,et al.  Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis , 2013, Science.

[62]  David Alan Drabold,et al.  Properties of amorphous and crystalline titanium dioxide from first principles , 2012, Journal of Materials Science.

[63]  H. Vrubel,et al.  Hydrogen evolution catalyzed by MoS3 and MoS2 particles , 2012 .

[64]  M. Trari,et al.  Photocatalytic hydrogen production over NiO modified silica under visible light irradiation , 2012 .

[65]  Prakhar Gupta,et al.  Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation , 2012 .

[66]  C. V. Singh,et al.  Amorphous TiO 2 as a photocatalyst for hydrogen production : a DFT study of structural and electronic properties , 2012 .

[67]  C. V. Singh,et al.  Amorphous TiO2 as a Photocatalyst for Hydrogen Production: A DFT Study of Structural and Electronic Properties , 2012 .

[68]  Chuncheng Chen,et al.  Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review , 2011 .

[69]  Lizhi Zhang,et al.  Efficient visible light driven photocatalytic removal of RhB and NO with low temperature synthesized In(OH)xSy hollow nanocubes: a comparative study. , 2011, Environmental science & technology.

[70]  M. Jaroniec,et al.  Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation , 2011 .

[71]  Geoffrey I N Waterhouse,et al.  Photoreaction of ethanol on Au/TiO2 anatase: Comparing the micro to nanoparticle size activities of the support for hydrogen production , 2010 .

[72]  Eric R. Waclawik,et al.  An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals. , 2009, Journal of the American Chemical Society.

[73]  Taihong Wang,et al.  The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature , 2009, Nanotechnology.

[74]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[75]  H. Zeng,et al.  ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. , 2008, ACS nano.

[76]  L. Giordano,et al.  Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations. , 2007, The Journal of chemical physics.

[77]  G. Yang Laser ablation in liquids : Applications in the synthesis of nanocrystals , 2007 .

[78]  I. Chorkendorff,et al.  Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution , 2005 .

[79]  M. Gondal,et al.  Production of hydrogen-rich syngas using p-type NiO catalyst: a laser-based photocatalytic approach , 2005 .

[80]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[81]  Z. Latajka,et al.  Cadmium(II) and nickel(II) complexes of benziporphyrins. A study of weak intramolecular metal-arene interactions. , 2004, Journal of the American Chemical Society.

[82]  Guanghou Wang,et al.  Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach , 2002 .

[83]  Serge Nakhmanson,et al.  THEORETICAL STUDY ON THE NATURE OF BAND-TAIL STATES IN AMORPHOUS SI , 1998 .

[84]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[85]  M. Crocker,et al.  1 H NMR spectroscopy of titania. Chemical shift assignments for hydroxy groups in crystalline and amorphous forms of TiO2 , 1996 .

[86]  S. Hüfner,et al.  Electron and hole doping in NiO , 1995 .

[87]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[88]  M. P. Dare-Edwards,et al.  Photoelectrochemistry of nickel(II) oxide , 1981 .

[89]  J. Nowotny,et al.  Chemical Diffusion in Nickel Oxide , 1979 .

[90]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[91]  W. Klemm,et al.  Über einige neuere Ergebnisse der anorganischen Chemie , 1943 .