ClothGAN: generation of fashionable Dunhuang clothes using generative adversarial networks

[1]  Qiang Wu,et al.  Smart fog based workflow for traffic control networks , 2019, Future Gener. Comput. Syst..

[2]  Rishi Sharma,et al.  A Note on the Inception Score , 2018, ArXiv.

[3]  Jaakko Lehtinen,et al.  Noise2Noise: Learning Image Restoration without Clean Data , 2018, ICML.

[4]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[5]  Qingguo Zhou,et al.  Intelligent monitor system based on cloud and convolutional neural networks , 2017, The Journal of Supercomputing.

[6]  Donna Soto-Morettini,et al.  Reverse engineering the human: artificial intelligence and acting theory , 2017, Connect. Sci..

[7]  Ya-li Wu,et al.  [null]. , 2019, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology.

[8]  H. Robbins A Stochastic Approximation Method , 1951 .

[9]  Hai Jiang,et al.  L4eRTL: a robust and secure real-time architecture with L4 microkernel and para-virtualised PSE51 partitions , 2017, Int. J. Embed. Syst..

[10]  S. L. Kokkendorff Gram Matrix Analysis of Finite Distance Spaces in Constant Curvature , 2004, Discret. Comput. Geom..

[11]  Luc Van Gool,et al.  European conference on computer vision (ECCV) , 2006, eccv 2006.

[12]  Zhe Gan,et al.  AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[14]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[15]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[16]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Harold Cohen The further exploits of Aaron, painter , 1995 .

[18]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[19]  Qingguo Zhou,et al.  A novel Monte Carlo-based neural network model for electricity load forecasting , 2020, Int. J. Embed. Syst..

[20]  Leonardo Arriagada,et al.  CG-Art: demystifying the anthropocentric bias of artistic creativity , 2020, Connect. Sci..

[21]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[22]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[23]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[24]  Q. Liu,et al.  FashionGAN: Display your fashion design using Conditional Generative Adversarial Nets , 2018, Comput. Graph. Forum.

[25]  Simon Colton,et al.  The Painting Fool Sees! New Projects with the Automated Painter , 2015, ICCC.

[26]  Tun-huang yen chiu yüan,et al.  The caves of Dunhuang , 2010 .

[27]  Chen Wang,et al.  Arrhythmia recognition and classification through deep learning-based approach , 2019, Int. J. Comput. Sci. Eng..

[28]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[29]  Ahmed M. Elgammal,et al.  CAN: Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating from Style Norms , 2017, ICCC.

[30]  Yoichi Ochiai,et al.  GANs-based Clothes Design: Pattern Maker Is All You Need to Design Clothing , 2019, AH.

[31]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[32]  SchmidhuberJürgen Deep learning in neural networks , 2015 .

[33]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[34]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).