Quantum dot nanocrystals for in vivo molecular and cellular imaging.

Semiconductor quantum dots (QD) are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. In comparison with organic dyes and fluorescent proteins, QD are emerging as a new class of fluorescent labels with improved brightness, resistance against photobleaching and multicolor fluorescence emission. These properties could improve the sensitivity of biological detection and imaging by at least 10- to 100-fold. Further development in high-quality near-infrared-emitting QD should allow ultrasensitive and multicolor imaging of molecular targets in deep tissue and living animals. Here, we discuss recent developments in QD synthesis and bioconjugation, applications in molecular and cellular imaging as well as promising directions for future research.

[1]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[2]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[3]  Graham Dellaire,et al.  Application of Quantum Dots as Probes for Correlative Fluorescence, Conventional, and Energy-filtered Transmission Electron Microscopy , 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[4]  J. Treadway,et al.  Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. , 2003, Nucleic acids research.

[5]  O. Minet,et al.  Heat Stress Induced Redistribution of Fluorescent Quantum Dots in Breast Tumor Cells , 2004, Journal of Fluorescence.

[6]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[7]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[8]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[9]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[10]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[11]  D. Sarma,et al.  Evolution of the electronic structure with size in II-VI semiconductor nanocrystals , 2003, cond-mat/0312704.

[12]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[14]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[15]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[16]  James McBride,et al.  Targeting cell surface receptors with ligand-conjugated nanocrystals. , 2002, Journal of the American Chemical Society.

[17]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[18]  S. Pathak,et al.  Hydroxylated quantum dots as luminescent probes for in situ hybridization. , 2001, Journal of the American Chemical Society.

[19]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[20]  Christine M. Micheel,et al.  Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks , 2002 .

[21]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[22]  Igor Nabiev,et al.  Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections , 2002, Laboratory Investigation.

[23]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[24]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[25]  A D Yoffe,et al.  Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .

[26]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[27]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[28]  Yang Li,et al.  Binding of semiconductor quantum dots to cellular integrins , 2004, IEEE Transactions on Nanotechnology.

[29]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[30]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[31]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[32]  K. Roth,et al.  Combined Tyramide Signal Amplification and Quantum Dots for Sensitive and Photostable Immunofluorescence Detection , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[33]  Earl J. Bergey,et al.  Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications , 2002 .

[34]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[35]  Akiyoshi Hoshino,et al.  Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. , 2004, Biochemical and biophysical research communications.

[36]  C. Bustamante,et al.  Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots , 2002 .

[37]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[38]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[39]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[40]  Peter E Barker,et al.  Semiconductor nanocrystal probes for human metaphase chromosomes. , 2004, Nucleic acids research.

[41]  A. P. Alivisatos,et al.  Less is more in medicine. , 2001, Scientific American.

[42]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[43]  Bing Xu,et al.  Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[44]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[45]  A. Sutherland,et al.  Quantum dots as luminescent probes in biological systems , 2002 .

[46]  Catherine J. Murphy,et al.  Quantum Dots: A Primer , 2002 .

[47]  Zeev Rosenzweig,et al.  Superparamagnetic Fe2O3 Beads−CdSe/ZnS Quantum Dots Core−Shell Nanocomposite Particles for Cell Separation , 2004 .

[48]  Hedi Mattoussi,et al.  Avidin: a natural bridge for quantum dot-antibody conjugates. , 2002, Journal of the American Chemical Society.

[49]  Xiaogang Peng Mechanisms for the Shape‐Control and Shape‐Evolution of Colloidal Semiconductor Nanocrystals , 2003 .

[50]  Thomas M. Jovin,et al.  Quantum dots finally come of age , 2003, Nature Biotechnology.

[51]  Wolfgang Knoll,et al.  Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width. , 2003, Journal of the American Chemical Society.

[52]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[53]  C. Niemeyer Functional Hybrid Devices of Proteins and Inorganic Nanoparticles , 2004 .

[54]  Shuming Nie,et al.  Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. , 2002, Journal of biomedical optics.

[55]  Igor Nabiev,et al.  Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. , 2004, Analytical biochemistry.

[56]  Xiaogang Peng,et al.  Control of photoluminescence properties of CdSe nanocrystals in growth. , 2002, Journal of the American Chemical Society.

[57]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[58]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[59]  R Weissleder,et al.  In vivo imaging of gene expression:. , 2001, Academic radiology.

[60]  Alexander L. Efros,et al.  Interband absorption of light in a semiconductor sphere , 2005 .

[61]  Shuming Nie,et al.  Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. , 2003, Journal of the American Chemical Society.

[62]  Yong Taik Lim,et al.  Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging , 2003, Molecular imaging.