On a cross-diffusion segregation problem arising from a model of interacting particles

We prove the existence of solutions of a cross-diffusion parabolic population problem. The system of partial differential equations is deduced as the limit equations satisfied by the densities corresponding to an interacting particles system modeled by stochastic differential equations. According to the values of the diffusion parameters related to the intra and inter-population repulsion intensities, the system may be classified in terms of an associated matrix. For proving the existence of solutions when the matrix is positive definite, we use a fully discrete finite element approximation in a general functional setting. If the matrix is only positive semi-definite, we use a regularization technique based on a related cross-diffusion model under more restrictive functional assumptions. We provide some numerical experiments demonstrating the weak and strong segregation effects corresponding to both types of matrices.

[1]  Ricardo Ruiz-Baier,et al.  Nonlinear Analysis: Real World Applications Mathematical Analysis and Numerical Simulation of Pattern Formation under Cross-diffusion , 2022 .

[2]  Lev S Tsimring,et al.  Continuum theory of partially fluidized granular flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Jonathan A. Sherratt,et al.  Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  E. H. Kerner,et al.  Further considerations on the statistical mechanics of biological associations , 1959 .

[5]  Ansgar Jüngel,et al.  Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion , 2004, SIAM J. Math. Anal..

[6]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[7]  M E Gurtin,et al.  On interacting populations that disperse to avoid crowding: preservation of segregation , 1985, Journal of mathematical biology.

[8]  J. U. Kim,et al.  Smooth solutions to a quasi-linear system of diffusion equations for a certain population model☆ , 1984 .

[9]  Mostafa Bendahmane,et al.  Weak and classical solutions to predator―prey system with cross-diffusion , 2010 .

[10]  Heitor C. M. Fernandes,et al.  A nonlinear diffusion model for granular segregation , 2003 .

[11]  M. C. Lombardo,et al.  Pattern formation driven by cross-diffusion in a 2D domain , 2012, 1211.4412.

[12]  Angela Stevens,et al.  The Derivation of Chemotaxis Equations as Limit Dynamics of Moderately Interacting Stochastic Many-Particle Systems , 2000, SIAM J. Appl. Math..

[13]  Ansgar Jüngel,et al.  A Parabolic Cross-Diffusion System for Granular Materials , 2003, SIAM J. Math. Anal..

[14]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[15]  Gonzalo Galiano,et al.  On a cross-diffusion population model deduced from mutation and splitting of a single species , 2012, Comput. Math. Appl..

[16]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[17]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[20]  D. Morale,et al.  Rescaling Stochastic Processes: Asymptotics , 2008 .

[21]  Gonzalo Galiano,et al.  Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics , 2001 .

[22]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[23]  Mirosław Lachowicz,et al.  Individually-based Markov processes modeling nonlinear systems in mathematical biology , 2011 .

[24]  M. C. Lombardo,et al.  A velocity--diffusion method for a Lotka--Volterra system with nonlinear cross and self-diffusion , 2009 .

[25]  Ansgar Jüngel,et al.  Analysis of a Parabolic Cross-Diffusion Semiconductor Model with Electron-Hole Scattering , 2007 .

[26]  Paul Deuring,et al.  An initial-boundary-value problem for a certain density-dependent diffusion system , 1987 .

[27]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[28]  Karl Oelschl iger On the Derivation of Reaction-Diffusion Equations as Limit Dynamics of Systems of Moderately Interacting Stochastic Processes , 2004 .

[29]  Marco Sammartino,et al.  Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion , 2012, Math. Comput. Simul..

[30]  John W. Barrett,et al.  Finite element approximation of a nonlinear cross-diffusion population model , 2004, Numerische Mathematik.

[31]  Wan-Tong Li,et al.  Turing patterns of a strongly coupled predatorprey system with diffusion effects , 2011 .

[32]  Roman Cherniha,et al.  New exact solutions of a nonlinear cross-diffusion system , 2008 .

[33]  M. Farkas,et al.  Competition in patchy environment with cross diffusion , 2004 .

[34]  Morton E. Gurtin,et al.  A note on interacting populations that disperse to avoid crowding , 1984 .

[35]  Diego del-Castillo-Negrete,et al.  Front propagation and segregation in a reaction–diffusion model with cross-diffusion , 2002 .

[36]  Gonzalo Galiano,et al.  On a quasilinear degenerate system arising in semiconductors theory. Part I: existence and uniqueness of solutions , 2001 .

[37]  Gonzalo Galiano,et al.  Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model , 2003, Numerische Mathematik.

[38]  Danielle Hilhorst,et al.  A NONLINEAR PARABOLIC-HYPERBOLIC SYSTEM FOR CONTACT INHIBITION OF CELL-GROWTH , 2012 .

[39]  M. Chaplain,et al.  Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. , 2006, Mathematical medicine and biology : a journal of the IMA.

[40]  Canrong Tian,et al.  Instability induced by cross-diffusion in reaction–diffusion systems , 2010 .

[41]  Ricardo Ruiz-Baier,et al.  Analysis of a finite volume method for a cross-diffusion model in population dynamics , 2011 .

[42]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[43]  Irving R Epstein,et al.  Cross-diffusion and pattern formation in reaction-diffusion systems. , 2009, Physical chemistry chemical physics : PCCP.

[44]  Martin Rumpf,et al.  Nonnegativity preserving convergent schemes for the thin film equation , 2000, Numerische Mathematik.

[45]  Yi Wang,et al.  The Global Existence of Solutions for a Cross-diffusion System , 2005 .

[46]  Masayasu Mimura,et al.  A free boundary problem arising in a simplified tumour growth model of contact inhibition , 2010 .

[47]  Amit Singer,et al.  Partially Reflected Diffusion , 2008, SIAM J. Appl. Math..

[48]  C C Travis,et al.  Epidemic models with spatial spread due to population migration , 1983, Journal of mathematical biology.

[49]  Gonzalo Galiano,et al.  Competing through altering the environment: A cross-diffusion population model coupled to transport–Darcy flow equations , 2011 .

[50]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[51]  Ricardo Ruiz-Baier,et al.  A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion , 2011 .

[52]  E. Gilada,et al.  A mathematical model of plants as ecosystem engineers , 2007 .

[53]  Atsushi Yagi Global solution to some quasilinear parabolic system in population dynamics , 1993 .

[54]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[55]  D. Morale,et al.  An interacting particle system modelling aggregation behavior: from individuals to populations , 2005, Journal of mathematical biology.

[56]  Shengmao Fu,et al.  Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics , 2009 .

[57]  Yaping Wu,et al.  The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems , 2005 .

[58]  J. Jorné,et al.  The diffusive Lotka-Volterra oscillating system. , 1977, Journal of theoretical biology.