Polyoxothiomolybdenum Wheels as Anionic Receptors for Recognition of Sulfate and Sulfonate Anions

The formation of supramolecular host–guest cyclic architectures, built up through the self-condensation process of [Mo2O2S2]2+ oxothiocations driven by sulfate and sulfonate anions is reported. The complexes [(SO4)2Mo10O10S10(OH)10(H2O)5]4– and [(EtSO3)2Mo10O10S10(OH)10(H2O)5]2– were characterized in the solid state by X-ray diffraction, and particular attention was given to the analysis of the hydrogen-bonding interactions, which ensure the host–guest stability of such architectures. Taking into account these properties, we report preliminary results on the grafting of oxothiomolybdenum cyclic materials onto sulfonated resin such as Dowex 50–80. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

[1]  J. Marrot,et al.  Tuning the thermodynamic stability of oxothiomolybdenum wheels: crystal structures, studies in solution and DFT calculations. , 2008, Dalton transactions.

[2]  Daniel A. Hillesheim,et al.  An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. , 2008, Angewandte Chemie.

[3]  L. Walder,et al.  6-Peroxo-6-zirconium crown and its hafnium analogue embedded in a triangular polyanion: [M6(O2)6(OH)6(gamma-SiW10O36)3]18- (M = Zr, Hf). , 2008, Journal of the American Chemical Society.

[4]  R. Thouvenot,et al.  Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. , 2008, Chemical communications.

[5]  Gianfranco Scorrano,et al.  Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [gamma-SiW10O36]8-: a totally inorganic oxygen-evolving catalyst. , 2008, Journal of the American Chemical Society.

[6]  Keigo Kamata,et al.  Efficient oxidative alkyne homocoupling catalyzed by a monomeric dicopper-substituted silicotungstate. , 2008, Angewandte Chemie.

[7]  Haisheng Chen,et al.  Design of hydrophobic polyoxometalate hybrid assemblies beyond surfactant encapsulation. , 2008, Chemistry.

[8]  Scott G. Mitchell,et al.  Isolation of extendable transition metal incorporated polyoxometalate intermediates with structural control. , 2008, Dalton transactions.

[9]  N. Dalal,et al.  Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster. , 2008, Chemistry.

[10]  S. Takamoto,et al.  Antitumour effect of polyoxomolybdates: induction of apoptotic cell death and autophagy in in vitro and in vivo models , 2007, British Journal of Cancer.

[11]  J. Marrot,et al.  Changing the oxothiomolybdate ring from an anionic to a cationic receptor. , 2007, Inorganic Chemistry.

[12]  J. Marrot,et al.  Host-guest adaptability within oxothiomolybdenum wheels: structures, studies in solution and DFT calculations. , 2007, Dalton transactions.

[13]  J. Marrot,et al.  Structure, formation, and dynamics of Mo(12) and Mo(16) oxothiomolybdenum rings containing terephtalate derivatives. , 2007, Chemistry.

[14]  J. Marrot,et al.  Effect of cyanato, azido, carboxylato, and carbonato ligands on the formation of cobalt(II) polyoxometalates: characterization, magnetic, and electrochemical studies of multinuclear cobalt clusters. , 2007, Chemistry.

[15]  L. Cronin,et al.  Exploiting the multifunctionality of organocations in the assembly of hybrid polyoxometalate clusters and networks. , 2007, Chemical communications.

[16]  A. Dolbecq,et al.  Functionalization of polyoxometalates by carboxylato and azido ligands: macromolecular complexes and extended compounds. , 2006, Chemical communications.

[17]  H. Yanagie,et al.  Anticancer activity of polyoxomolybdate. , 2006, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[18]  E. Pehlivan,et al.  The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin. , 2006, Journal of hazardous materials.

[19]  U. Kortz,et al.  Bio-inspired oxidations with polyoxometalate catalysts , 2006 .

[20]  J. Marrot,et al.  [Mo4O4(μ-S)4(μ-OH)2(μ-H2O)(H2O)2(pba)]2−: An Original Coordination Mode for the Ligand 1,3-Propylenebis(Oxamate) , 2006 .

[21]  J. Marrot,et al.  Polyphosphate ions encapsulated in oxothiomolybdate rings: synthesis, structure, and behavior in solution. , 2004, Journal of the American Chemical Society.

[22]  A. Slawin,et al.  A novel polyoxo(thio)molybdenum(V) sulfite compound: Synthesis and crystal structure of {[Mo2V(μ-S)2O2]6(μ3-SO3)4(μ-SO3)12}20− anion , 2003 .

[23]  A. Dolbecq,et al.  From molecular rings to the 3-D solid: ionization of the neutral [Mo10S10O10(OH)10(H2O)5] molecular ring for the building blocks strategy , 2001 .

[24]  J. Marrot,et al.  [W16S16O16(OH)16(H2O)4(C5H6O4)2]4−: A Flexible, Pillared Oxothiotungstate Wheel , 2001 .

[25]  A. Dolbecq,et al.  “Wheeling Templates” in Molecular Oxothiomolybdate Rings: Syntheses, Structures, and Dynamics , 2000 .

[26]  A. Dolbecq,et al.  Self-Condensation of [MoV2O2S2]2+ with Phosphate or Arsenate Ions by Acid–Base Processes in Aqueous Solution: Syntheses, Crystal Structures, and Reactivity of [(HXO4)4Mo6S6O6(OH)3]5−, X=P, As , 1999 .

[27]  E. Cadot,et al.  [Mo12 S12 O12 (OH)12 (H2 O)6 ]: A Cyclic Molecular Cluster Based on the [Mo2 S2 O2 ]2+ Building Block. , 1998, Angewandte Chemie.

[28]  E. Cadot,et al.  Cyclic molecular materials based on [M2O2S2]2+ cores (M = Mo or W). , 2002, Chemical communications.

[29]  J. Marrot,et al.  [Mo10S10O10(OH)10(H2O)5]: a novel decameric molecular ring showing supramolecular properties , 2000 .

[30]  A. Dolbecq,et al.  [Mo9S8O12(OH)8(H2O)2]2–: a novel polyoxothiomolybdate with a MoVI octahedron encapsulated in a reduced MoV cyclic octanuclear core , 1998 .