CHAOTIC HIERARCHY IN HIGH DIMENSIONS

The paper suggests a new mechanism for the development of higher-order chaos in accordance with the concept of a chaotic hierarchy. A discrete-time model is proposed which demonstrates how the creation of coexisting chaotic attractors combined with boundary crises can produce a continued growth of the Lyapunov dimension of the resulting chaotic behavior.

[1]  J. Sethna,et al.  Universal Transition from Quasiperiodicity to Chaos in Dissipative Systems , 1982 .

[2]  J. Yorke,et al.  Attractors on an N-torus: Quasiperiodicity versus chaos , 1985 .

[3]  Juergen Kurths,et al.  Synchronization in a population of globally coupled chaotic oscillators , 1996 .

[4]  F. Takens,et al.  Occurrence of strange AxiomA attractors near quasi periodic flows onTm,m≧3 , 1978 .

[5]  O. Rössler An equation for hyperchaos , 1979 .

[6]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[7]  E. Mosekilde,et al.  Chaotic hierarchy in a model of competing populations , 1993 .

[8]  F. M. Stewart,et al.  Resource-Limited Growth, Competition, and Predation: A Model and Experimental Studies with Bacteria and Bacteriophage , 1977, The American Naturalist.

[9]  Robert K. Colwell,et al.  The Relationship between Species Diversity and Stability: An Experimental Approach with Protozoa and Bacteria , 1968 .

[10]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[11]  Role of multistability in the transition to chaotic phase synchronization. , 1999, Chaos.

[12]  F. Willeboordse Selection of windows, attractors and self-similar patterns in a coupled map lattice , 1992 .

[13]  Eckehard Schöll,et al.  Nonequilibrium phase transitions in semiconductors , 1987 .

[14]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[15]  K. Kaneko Spatiotemporal Intermittency in Coupled Map Lattices , 1985 .

[16]  Kunihiko Kaneko,et al.  Globally coupled circle maps , 1991 .

[17]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[18]  J. Guckenheimer,et al.  Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos , 1991 .

[19]  Dmitry E. Postnov,et al.  Synchronization Phenomena in an Array of Population Dynamic Systems , 1998, Adv. Complex Syst..