Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica

Atmospheric, oceanic, and subglacial forcing scenarios from the Sea‐level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three‐dimensional thermomechanical ice‐sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low‐latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low‐surface‐slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub‐shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub‐shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding‐zone processes, ocean‐ice interactions, and the numerical representation of all three.

[1]  V. Chugunov,et al.  Modelling of a marine glacier and ice-sheet-ice-shelf transition zone based on asymptotic analysis , 1996, Annals of Glaciology.

[2]  A. Pulido,et al.  A Conserved Molecular Framework for Compound Leaf Development , 2008, Science.

[3]  Joeri Rogelj,et al.  Global warming under old and new scenarios using IPCC climate sensitivity range estimates , 2012 .

[4]  E. Bueler,et al.  The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description , 2010 .

[5]  J. H. Mercer West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster , 1978, Nature.

[6]  Francisco J. Doblas-Reyes,et al.  Forecast assimilation: a unified framework for the combination of multi-model weather and climate predictions , 2005 .

[7]  I. C. Rutt,et al.  Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change , 2010 .

[8]  R. Alley,et al.  Ice sheet mass balance and sea level , 2009, Antarctic Science.

[9]  S. Cornford,et al.  Parameterising the grounding line in flow-line ice sheet models , 2010 .

[10]  H. Zwally,et al.  Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet , 2012, Journal of Glaciology.

[11]  A. Wilchinsky,et al.  Modelling of a marine glacier and ice-sheet – ice shelf transition zone based on asymptotic analysis , 1996 .

[12]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[13]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[14]  C. Schoof Marine ice sheet dynamics. Part 2. A Stokes flow contact problem , 2011, Journal of Fluid Mechanics.

[15]  Richard B. Alley,et al.  Effects of basal‐melting distribution on the retreat of ice‐shelf grounding lines , 2008 .

[16]  R. Gerdes,et al.  Ocean circulation and ice‐ocean interaction beneath the Amery Ice Shelf, Antarctica , 2001 .

[17]  Ed Bueler,et al.  Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model , 2008, 0810.3449.

[18]  Eric Rignot,et al.  Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data , 2008 .

[19]  Carl E. Bøggild,et al.  A new present-day temperature parameterization for Greenland , 2009, Journal of Glaciology.

[20]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[21]  M. E. Peters,et al.  Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams , 2005 .

[22]  Eric Rignot,et al.  Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland , 2013, Journal of Geophysical Research: Earth Surface.

[23]  D. Vaughan,et al.  Why Is It Hard to Predict the Future of Ice Sheets? , 2007, Science.

[24]  T. Grenfell,et al.  Ice motion and driving forces during a spring ice shove on the Alaskan Chukchi coast , 2004 .

[25]  Nils Olsen,et al.  Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data , 2005, Science.

[26]  L. Stearns,et al.  Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery , 2007 .

[27]  D. Goldberg Numerical and theoretical treatment of grounding line movement and ice shelf buttressing in marine ice sheets , 2009 .

[28]  E. van Meijgaard,et al.  Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model , 2006 .

[29]  Eric Rignot,et al.  Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) , 2012 .

[30]  H. Hellmer,et al.  Simulations of ice‐ocean dynamics in the Weddell Sea 1. Model configuration and validation , 2002 .

[31]  Daniel F. Martin,et al.  Adaptive mesh, finite volume modeling of marine ice sheets , 2013, J. Comput. Phys..

[32]  I. Joughin,et al.  Melting and freezing beneath Filchner‐Ronne Ice Shelf, Antarctica , 2003 .

[33]  J. Weertman,et al.  Stability of the Junction of an Ice Sheet and an Ice Shelf , 1974, Journal of Glaciology.

[34]  A. Payne,et al.  Resolution requirements for grounding-line modelling: sensitivity to basal drag and ice-shelf buttressing , 2012, Annals of Glaciology.

[35]  Enzo Boschi,et al.  Glacial isostasy, sea-level and mantle rheology , 1991 .

[36]  Douglas R. Macayeal,et al.  Large‐scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica , 1989 .

[37]  Ian M. Howat,et al.  Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade , 2011, Proceedings of the National Academy of Sciences.

[38]  L. Morland Unconfined Ice-Shelf Flow , 1987 .

[39]  G. Gudmundsson,et al.  On the limit to resolution and information on basal properties obtainable from surface data on ice streams , 2008 .

[40]  B. Hewitson,et al.  Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections , 2010 .

[41]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[42]  Eric Rignot,et al.  Ice flux divergence anomalies on 79north Glacier, Greenland , 2011 .

[43]  David G. Vaughan,et al.  Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission , 2006 .

[44]  Sridhar Anandakrishnan,et al.  Effect of Sedimentation on Ice-Sheet Grounding-Line Stability , 2007, Science.

[45]  Christian Schoof,et al.  Thin-Film Flows with Wall Slip: An Asymptotic Analysis of Higher Order Glacier Flow Models , 2010 .

[46]  R. Alley,et al.  Surface elevation changes at the front of the Ross Ice Shelf: Implications for basal melting , 2009 .

[47]  J. Paden,et al.  Sensitivity Analysis of Pine Island Glacier ice flow using ISSM and DAKOTA , 2012 .

[48]  T. Hughes,et al.  CHANGING ICE LOADS ON THE EARTH'S SURFACE DURING THE LAST GLACIATION CYCLE , 1991 .

[49]  S. Jacobs,et al.  Modelling the ocean circulation beneath the Ross Ice Shelf , 2003, Antarctic Science.

[50]  Antony J. Payne,et al.  An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1) , 2010 .

[51]  T. Zwinger,et al.  Marine ice sheet dynamics: Hysteresis and neutral equilibrium , 2009 .

[52]  Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications , 2011 .

[53]  Roland C. Warner,et al.  A computer scheme for rapid calculations of balance-flux distributions , 1996, Annals of Glaciology.

[54]  R. Hindmarsh,et al.  Coupling of ice‐shelf melting and buttressing is a key process in ice‐sheets dynamics , 2010 .

[55]  E. Bueler,et al.  The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet , 2010 .

[56]  R. Thomas The Dynamics of Marine Ice Sheets , 1979, Journal of Glaciology.

[57]  Thomas Zwinger,et al.  Impact of bedrock description on modeling ice sheet dynamics , 2011 .

[58]  Barbara Scherllin-Pirscher,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[59]  Eric Rignot,et al.  Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica , 2010 .

[60]  A. Jenkins,et al.  Ice-Ocean Interaction On Ronne Ice Shelf, Antarctica , 1991, Annals of Glaciology.

[61]  I. Joughin,et al.  Kinematic first-order calving law implies potential for abrupt ice-shelf retreat , 2011 .

[62]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[63]  R. Arthern,et al.  Initialization of ice-sheet forecasts viewed as an inverse Robin problem , 2010, Journal of Glaciology.

[64]  Reto Knutti,et al.  Risks of Model Weighting in Multimodel Climate Projections , 2010 .

[65]  Sridhar Anandakrishnan,et al.  Discovery of Till Deposition at the Grounding Line of Whillans Ice Stream , 2007, Science.

[66]  Ian M. Howat,et al.  Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland , 2008 .

[67]  A. Shepherd,et al.  Warm ocean is eroding West Antarctic Ice Sheet , 2004 .

[68]  R. Hardy,et al.  An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry , 2000, Journal of Glaciology.

[69]  Christian Schoof,et al.  Marine ice-sheet dynamics. Part 1. The case of rapid sliding , 2007, Journal of Fluid Mechanics.

[70]  L. Morland Thermomechanical balances of ice sheet flows , 1984 .

[71]  J. Oerlemans,et al.  Parameterization of the Annual Surface Temperature and Mass Balance of Antarctica , 1990, Annals of Glaciology.

[72]  Philippe Huybrechts,et al.  The present evolution of the Greenland ice sheet: an assessment by modelling , 1994 .

[73]  P. Huybrechts,et al.  Ice-dynamic conditions across the grounding zone, Ekströmisen, East Antarctica , 1999, Journal of Glaciology.

[74]  J. Fastook,et al.  A Finite-element Model of Antarctica: sensitivity test for meteorological mass-balance relationship , 1994, Journal of Glaciology.

[75]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[76]  Ian Joughin,et al.  Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet , 2008, Science.

[77]  Maik Thomas,et al.  On the long-term memory of the Greenland Ice Sheet , 2011 .

[78]  Michael H. Ritzwoller,et al.  Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica , 2004 .

[79]  H. Hellmer,et al.  Simulation of ice-ocean dynamics in the Weddell Sea . Part I : Model con guration and validation , 2022 .

[80]  Fuyuki Saito,et al.  Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet , 2011, Annals of Glaciology.

[81]  P. Heimbach,et al.  Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model , 2009, Annals of Glaciology.

[82]  Philippe Huybrechts,et al.  The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming , 1999 .

[83]  R. Alley,et al.  Effect of orbital‐scale climate cycling and meltwater drainage on ice sheet grounding line migration , 2010 .

[84]  R. Alley,et al.  Dynamic (in)stability of Thwaites Glacier, West Antarctica , 2013 .

[85]  William H. Lipscomb,et al.  Toward a new generation of ice sheet models , 2007 .

[86]  K. Hutter Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets , 1983 .

[87]  Gaël Durand,et al.  Full Stokes modeling of marine ice sheets: influence of the grid size , 2009, Annals of Glaciology.

[88]  D. Vaughan,et al.  Reassessment of net surface mass balance in Antarctica , 1999 .

[89]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[90]  R. Greve A continuum–mechanical formulation for shallow polythermal ice sheets , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[91]  Ralf Greve,et al.  Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates , 2012, Annals of Glaciology.

[92]  Ian Joughin,et al.  Numerical modeling of ocean‐ice interactions under Pine Island Bay's ice shelf , 2007 .

[93]  J. Weertman,et al.  Deformation of Floating Ice Shelves , 1957, Journal of Glaciology.

[94]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[95]  Bert De Smedt,et al.  Role of transition zones in marine ice sheet dynamics , 2006 .

[96]  A. Vieli,et al.  Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans , 2004 .

[97]  T. Sanderson Equilibrium Profile of Ice Shelves , 1979, Journal of Glaciology.

[98]  B. Parizek,et al.  Implications of initial conditions and ice–ocean coupling for grounding-line evolution , 2010 .

[99]  Reto Knutti,et al.  Challenges in Combining Projections from Multiple Climate Models , 2010 .

[100]  D. J. Wingham,et al.  Conditions for a steady ice sheet–ice shelf junction , 2008 .

[101]  W. F. Budd,et al.  An Analysis of the Relation Between the Surface and Bedrock Profiles of Ice Caps , 1971, Journal of Glaciology.

[102]  N. Reeh,et al.  Parameterization of melt rate and surface temperature on the Greenland ice sheet , 1989 .

[103]  T. Scambos,et al.  Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups , 2009 .

[104]  A. Payne,et al.  Mass Balance of the Cryosphere: Modelling land-ice dynamics , 2004 .

[105]  William H. Lipscomb,et al.  A Community Ice Sheet Model for Sea Level Prediction , 2009 .

[106]  Antony J. Payne,et al.  Assessing the ability of numerical ice sheet models to simulate grounding line migration , 2005 .

[107]  R. Thomas,et al.  The Creep of Ice Shelves Theory , 1973, Journal of Glaciology.

[108]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[109]  J. G. Ferrigno,et al.  Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century , 2005, Science.

[110]  O. Gagliardini,et al.  The stability of grounding lines on retrograde slopes , 2012 .

[111]  Fabien Gillet-Chaulet,et al.  Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice , 2011, Journal of Glaciology.

[112]  Ian Joughin,et al.  Modeling Ice-Sheet Flow , 2012, Science.

[113]  William H. Lipscomb,et al.  Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project) , 2012, Journal of Glaciology.

[114]  Richard F. Katz,et al.  Stability of ice-sheet grounding lines , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  David G. DeWitt,et al.  Predictive Skill of AGCM Seasonal Climate Forecasts Subject to Different SST Prediction Methodologies , 2008 .

[116]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[117]  F. Saito,et al.  The Cryosphere Results of the Marine Ice Sheet Model Intercomparison Project , 2012 .

[118]  Matt A. King,et al.  Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf , 2003 .

[119]  F. Giorgi Interdecadal variability of regional climate change: implications for the development of regional climate change scenarios , 2005 .

[120]  Gaël Durand,et al.  Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison , 2013, Journal of Glaciology.