Analytic criteria in the qualitative spectral analysis of the Schrödinger operator

This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since t ...

[1]  Israel Gohberg,et al.  Operator theoretical methods and applications to mathematical physics : the Erhard Meister memorial volume , 2012 .

[2]  V. Maz'ya Conductor inequalities and criteria for Sobolev type two-weight imbeddings , 2006 .

[3]  M. Shubin,et al.  Can One See the Fundamental Frequency of a Drum? , 2005, math/0506181.

[4]  S. Denisov Absolutely continuous spectrum of multidimensional Schrödinger operator , 2004, math/0408376.

[5]  V. Maz'ya,et al.  Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator , 2004, math/0406050.

[6]  Igor E. Verbitsky,et al.  The Schrödinger operator on the energy space: boundedness and compactness criteria , 2002 .

[7]  M. Shubin,et al.  Essential self-adjointness of Schrödinger-type operators on manifolds , 2002, math/0201231.

[8]  Barry Simon,et al.  Schrödinger operators in the twentieth century , 2000 .

[9]  L. Carleson Selected Problems on Exceptional Sets , 1998 .

[10]  M. Solomyak,et al.  Regular and Pathological Eigenvalue Behavior for the Equation −λu″=Vuon the Semiaxis , 1997 .

[11]  E. Davies,et al.  Lp Spectral Theory of Higher‐Order Elliptic Differential Operators , 1997 .

[12]  V. Liskevich,et al.  Form-bounded perturbations of generators of sub-Markovian semigroups , 1996, Acta Applicandae Mathematicae.

[13]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[14]  V. Maz'ya,et al.  Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers , 1995 .

[15]  Maz'ya V. Carlsson Anders On Approximation in Weighted Sobolev Spaces and Self-Adjointness. , 1994 .

[16]  E. Grinshpun Asymptotics of spectrum under infinitesimally form-bounded perturbation , 1994 .

[17]  K. Sturm,et al.  Schrödinger operators with highly singular oscillating potentials , 1992 .

[18]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[19]  J. Wilson,et al.  Some weighted norm inequalities concerning the schrödinger operators , 1985 .

[20]  Tosio Kato Remarks on schrödinger operators with vector potentials , 1978 .

[21]  V. G. Maz’ja ON (p, l)-CAPACITY, IMBEDDING THEOREMS, AND THE SPECTRUM OF A SELFADJOINT ELLIPTIC OPERATOR , 1973 .

[22]  Tosis Kato,et al.  Schrödinger operators with singular potentials , 1972 .

[23]  L. Hedberg On certain convolution inequalities , 1972 .

[24]  V. A. Kondrat'ev,et al.  On Positive Solutions of Elliptic Equations , 1971 .

[25]  R. Phillips,et al.  Dissipative operators in a Banach space , 1961 .

[26]  F. Stummel Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen , 1956 .

[27]  Tosio Kato Fundamental properties of Hamiltonian operators of Schrödinger type , 1951 .

[28]  E. Hille,et al.  Non-oscillation theorems , 1948 .

[29]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung. V , 1941 .

[30]  K. Friedrichs,et al.  Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .

[31]  Boguslaw Petryszak ELECTRONIC DELIVERY COVER SHEET Warning Concerning Copyright Restrictions , 2010 .

[32]  M. E. Taylor Scattering Length of Positive Potentials , 2007 .

[33]  B. Reviews,et al.  Operator methods in quantum mechanics , 2007 .

[34]  V. Maz'ya,et al.  Characterization of Multipliers in Pairs of Besov Spaces , 2004 .

[35]  Vladimir G. Maz´ya Lectures on isoperimetric and capacitary inequalities in the theory of Sobolev spaces , 2003 .

[36]  E. Grinshpun On Spectral Properties of Schrödinger-Type Operator with Complex Potential , 1996 .

[37]  T. Suslina,et al.  Spectral theory of differential operators , 1995 .

[38]  Kai Lai Chung,et al.  From Brownian Motion To Schrödinger's Equation , 1995 .

[39]  E. Sawyer,et al.  The trace inequality and eigenvalue estimates for Schrödinger operators , 1986 .

[40]  Martin Schechter,et al.  Spectra of partial differential operators , 1986 .

[41]  S. Agmon On Positive Solutions of Elliptic Equations with Periodic Coefficients in N, Spectral Results and Extensions to Elliptic Operators on Riemannian Manifolds , 1984 .

[42]  Vladimir Maz’ya,et al.  Theory of multipliers in spaces of differentiable functions , 1983 .

[43]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[44]  B. Simon Lower semicontinuhy of positive quadratic forms , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[45]  J. Ginibre,et al.  Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials , 1976 .

[46]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[47]  N. Trudinger Linear elliptic operators with measurable coe cients , 1973 .

[48]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[49]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[50]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[51]  Tosio Kato Perturbation theory for linear operators , 1966 .

[52]  J. Schwartz,et al.  Spectral theory : self adjoint operators in Hilbert space , 1963 .

[53]  M. Birman,et al.  The spectrum of singular boundary problems , 1961 .

[54]  J. Schwinger ON THE BOUND STATES OF A GIVEN POTENTIAL. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[55]  G. Choquet Theory of capacities , 1954 .

[56]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[57]  M. Shubin,et al.  Institute for Mathematical Physics Discreteness of Spectrum and Positivity Criteria for Schrödinger Operators Discreteness of Spectrum and Positivity Criteria for Schrödinger Operators , 2022 .

[58]  M. Shubin,et al.  Institute for Mathematical Physics Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators , 2022 .

[59]  M.,et al.  Brownian Motion and Harnack Inequality for Schrodinger Operators , 2022 .