Analytic criteria in the qualitative spectral analysis of the Schrödinger operator
暂无分享,去创建一个
[1] Israel Gohberg,et al. Operator theoretical methods and applications to mathematical physics : the Erhard Meister memorial volume , 2012 .
[2] V. Maz'ya. Conductor inequalities and criteria for Sobolev type two-weight imbeddings , 2006 .
[3] M. Shubin,et al. Can One See the Fundamental Frequency of a Drum? , 2005, math/0506181.
[4] S. Denisov. Absolutely continuous spectrum of multidimensional Schrödinger operator , 2004, math/0408376.
[5] V. Maz'ya,et al. Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator , 2004, math/0406050.
[6] Igor E. Verbitsky,et al. The Schrödinger operator on the energy space: boundedness and compactness criteria , 2002 .
[7] M. Shubin,et al. Essential self-adjointness of Schrödinger-type operators on manifolds , 2002, math/0201231.
[8] Barry Simon,et al. Schrödinger operators in the twentieth century , 2000 .
[9] L. Carleson. Selected Problems on Exceptional Sets , 1998 .
[10] M. Solomyak,et al. Regular and Pathological Eigenvalue Behavior for the Equation −λu″=Vuon the Semiaxis , 1997 .
[11] E. Davies,et al. Lp Spectral Theory of Higher‐Order Elliptic Differential Operators , 1997 .
[12] V. Liskevich,et al. Form-bounded perturbations of generators of sub-Markovian semigroups , 1996, Acta Applicandae Mathematicae.
[13] L. Hedberg,et al. Function Spaces and Potential Theory , 1995 .
[14] V. Maz'ya,et al. Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers , 1995 .
[15] Maz'ya V. Carlsson Anders. On Approximation in Weighted Sobolev Spaces and Self-Adjointness. , 1994 .
[16] E. Grinshpun. Asymptotics of spectrum under infinitesimally form-bounded perturbation , 1994 .
[17] K. Sturm,et al. Schrödinger operators with highly singular oscillating potentials , 1992 .
[18] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[19] J. Wilson,et al. Some weighted norm inequalities concerning the schrödinger operators , 1985 .
[20] Tosio Kato. Remarks on schrödinger operators with vector potentials , 1978 .
[21] V. G. Maz’ja. ON (p, l)-CAPACITY, IMBEDDING THEOREMS, AND THE SPECTRUM OF A SELFADJOINT ELLIPTIC OPERATOR , 1973 .
[22] Tosis Kato,et al. Schrödinger operators with singular potentials , 1972 .
[23] L. Hedberg. On certain convolution inequalities , 1972 .
[24] V. A. Kondrat'ev,et al. On Positive Solutions of Elliptic Equations , 1971 .
[25] R. Phillips,et al. Dissipative operators in a Banach space , 1961 .
[26] F. Stummel. Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen , 1956 .
[27] Tosio Kato. Fundamental properties of Hamiltonian operators of Schrödinger type , 1951 .
[28] E. Hille,et al. Non-oscillation theorems , 1948 .
[29] F. Rellich,et al. Störungstheorie der Spektralzerlegung. V , 1941 .
[30] K. Friedrichs,et al. Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .
[31] Boguslaw Petryszak. ELECTRONIC DELIVERY COVER SHEET Warning Concerning Copyright Restrictions , 2010 .
[32] M. E. Taylor. Scattering Length of Positive Potentials , 2007 .
[33] B. Reviews,et al. Operator methods in quantum mechanics , 2007 .
[34] V. Maz'ya,et al. Characterization of Multipliers in Pairs of Besov Spaces , 2004 .
[35] Vladimir G. Maz´ya. Lectures on isoperimetric and capacitary inequalities in the theory of Sobolev spaces , 2003 .
[36] E. Grinshpun. On Spectral Properties of Schrödinger-Type Operator with Complex Potential , 1996 .
[37] T. Suslina,et al. Spectral theory of differential operators , 1995 .
[38] Kai Lai Chung,et al. From Brownian Motion To Schrödinger's Equation , 1995 .
[39] E. Sawyer,et al. The trace inequality and eigenvalue estimates for Schrödinger operators , 1986 .
[40] Martin Schechter,et al. Spectra of partial differential operators , 1986 .
[41] S. Agmon. On Positive Solutions of Elliptic Equations with Periodic Coefficients in N, Spectral Results and Extensions to Elliptic Operators on Riemannian Manifolds , 1984 .
[42] Vladimir Maz’ya,et al. Theory of multipliers in spaces of differentiable functions , 1983 .
[43] Barry Simon,et al. Methods of modern mathematical physics. III. Scattering theory , 1979 .
[44] B. Simon. Lower semicontinuhy of positive quadratic forms , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[45] J. Ginibre,et al. Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials , 1976 .
[46] M. Reed,et al. Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .
[47] N. Trudinger. Linear elliptic operators with measurable coe cients , 1973 .
[48] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[49] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[50] N. S. Landkof. Foundations of Modern Potential Theory , 1972 .
[51] Tosio Kato. Perturbation theory for linear operators , 1966 .
[52] J. Schwartz,et al. Spectral theory : self adjoint operators in Hilbert space , 1963 .
[53] M. Birman,et al. The spectrum of singular boundary problems , 1961 .
[54] J. Schwinger. ON THE BOUND STATES OF A GIVEN POTENTIAL. , 1961, Proceedings of the National Academy of Sciences of the United States of America.
[55] G. Choquet. Theory of capacities , 1954 .
[56] W. L. Cowley. The Uncertainty Principle , 1949, Nature.
[57] M. Shubin,et al. Institute for Mathematical Physics Discreteness of Spectrum and Positivity Criteria for Schrödinger Operators Discreteness of Spectrum and Positivity Criteria for Schrödinger Operators , 2022 .
[58] M. Shubin,et al. Institute for Mathematical Physics Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators , 2022 .
[59] M.,et al. Brownian Motion and Harnack Inequality for Schrodinger Operators , 2022 .