A study of the sensitivity of shape measurements to the input parameters of weak-lensing image simulations

Improvements in the accuracy of shape measurements are essential to exploit the statistical power of planned imaging surveys that aim to constrain cosmological parameters using weak lensing by large-scale structure. Although a range of tests can be performed using the measurements, the performance of the algorithm can only be quantified using simulated images. This yields, however, only meaningful results if the simulated images resemble the real observations sufficiently well. In this paper we explore the sensitivity of the multiplicative bias to the input parameters of Euclid-like image simulations.We find that algorithms will need to account for the local density of sources. In particular the impact of galaxies below the detection limit warrants further study, because magnification changes their number density, resulting in correlations between the lensing signal and multiplicative bias. Although achieving sub-percent accuracy will require further study, we estimate that sufficient archival Hubble Space Telescope data are available to create realistic populations of galaxies.

[1]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[2]  H. Hoekstra,et al.  Weak Lensing Analysis of Cl 1358+62 Using Hubble Space Telescope Observations , 1998 .

[3]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[4]  J. Walsh,et al.  SPECTROPHOTOMETRICALLY IDENTIFIED STARS IN THE PEARS-N AND PEARS-S FIELDS , 2009, 0901.3321.

[5]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[6]  Chihway Chang,et al.  CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY , 2015, 1504.02778.

[7]  H. Hoekstra,et al.  Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2 , 2011, 1107.4093.

[8]  S. Seitz,et al.  Bias-free shear estimation using artificial neural networks , 2010, 1002.0838.

[9]  A. Heavens,et al.  Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey. , 2016, Monthly notices of the Royal Astronomical Society.

[10]  J. Amiaux,et al.  Defining a weak lensing experiment in space , 2012, 1210.7691.

[11]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[12]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[13]  Yannick Mellier,et al.  How accurately can we measure weak gravitational shear , 2001 .

[14]  Andreas Just,et al.  Detailed comparison of Milky Way models based on stellar population synthesis and SDSS star counts at the north Galactic pole , 2012, 1207.4551.

[15]  A. Heavens,et al.  Weak lensing with sizes, magnitudes and shapes , 2014, 1410.7839.

[16]  M. Postman,et al.  CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS , 2015, 1507.04385.

[17]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[18]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[19]  Alina Kiessling,et al.  Galaxy Alignments: An Overview , 2015, 1504.05456.

[20]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[21]  Rachel Mandelbaum,et al.  Metacalibration: Direct Self-Calibration of Biases in Shear Measurement , 2017, 1702.02600.

[22]  Roberto Scaramella,et al.  Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) , 2012, 1210.7690.

[23]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[24]  Michael Hirsch,et al.  Sersic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction , 2013, 1308.4663.

[25]  L. Waerbeke,et al.  CARS: The CFHTLS-Archive-Research Survey. III. First detection of cosmic magnification in samples of , 2009, 0906.1580.

[26]  Chien Y. Peng,et al.  GEMS: Galaxy Evolution from Morphologies and SEDs , 2004 .

[27]  Massimo Viola,et al.  Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing , 2012, 1204.5147.

[28]  H. Hildebrandt Observational biases in flux magnification measurements , 2015, 1511.01352.

[29]  H. Hoekstra,et al.  Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.

[30]  M. Bethge,et al.  Results of the GREAT08 Challenge?: an image analysis competition for cosmological lensing: Results o , 2009, 0908.0945.

[31]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[32]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[33]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[34]  H. Hoekstra,et al.  Finding halo streams with a pencil-beam survey - New wraps in the Sagittarius stream , 2013, 1311.7580.

[35]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[36]  H. Hoekstra,et al.  LENSING MAGNIFICATION: A NOVEL METHOD TO WEIGH HIGH-REDSHIFT CLUSTERS AND ITS APPLICATION TO SpARCS , 2011, 1103.4407.

[37]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[38]  R. B. Barreiro,et al.  Size magnification as a complement to cosmic shear , 2012, 1209.1646.

[39]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[40]  P. Schneider,et al.  A bias in cosmic shear from galaxy selection: results from ray-tracing simulations , 2010, 1010.0010.

[41]  A. Amara,et al.  Point spread function calibration requirements for dark energy from cosmic shear , 2007, 0711.4886.

[42]  R. Mandelbaum,et al.  The impact of cosmic variance on simulating weak lensing surveys , 2014, 1412.1094.

[43]  Anton M. Koekemoer,et al.  A DETECTION OF WEAK-LENSING MAGNIFICATION USING GALAXY SIZES AND MAGNITUDES , 2011, 1111.3679.

[44]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[45]  G. A. Luppino,et al.  Detection of Weak Lensing by a Cluster of Galaxies at z = 0.83 , 1996, astro-ph/9601194.

[46]  Roberto Scaramella,et al.  On the shear estimation bias induced by the spatial variation of colour across galaxy profiles. , 2012, 1211.5025.

[47]  Adam Amara,et al.  Noise bias in weak lensing shape measurements , 2012, 1203.5050.

[48]  Granada,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[49]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[50]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[51]  H. Hoekstra,et al.  Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters , 2015, 1508.05308.

[52]  Michael C. Cooper,et al.  THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES , 2012, 1203.1651.

[53]  M. Bartelmann,et al.  Weak gravitational lensing with deimos , 2010, 1008.1076.

[54]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses , 2015, 1502.01883.

[55]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[56]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[57]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[58]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[59]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[60]  T. Kitching,et al.  A fast empirical method for galaxy shape measurements in weak lensing surveys , 2012, 1203.4429.

[61]  L. Waerbeke,et al.  Cluster magnification and the mass–richness relation in CFHTLenS , 2013, 1310.2295.

[62]  S. Borgani,et al.  Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey , 2015, 1505.02165.

[63]  C. B. D'Andrea,et al.  The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.

[64]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[65]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[66]  Michael D. Schneider,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. II. FULL COSMOLOGICAL PARAMETER CONSTRAINTS FROM TOMOGRAPHY , 2015, 1510.03962.

[67]  Elliptical Weighted HOLICs for Weak Lensing Shear Measurement. part1:Definitions and isotropic PSF correction , 2010, 1010.0466.

[68]  H. Hoekstra,et al.  A skewer survey of the Galactic halo from deep CFHT and INT images , 2015, 1502.02460.

[69]  Gary M. Bernstein,et al.  Shape measurement biases from underfitting and ellipticity gradients , 2010, 1001.2333.

[70]  David N. Spergel,et al.  Looking through the same lens: Shear calibration for LSST, Euclid, and WFIRST with stage 4 CMB lensing , 2016, 1607.01761.

[71]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[72]  T. Kitching,et al.  On the Probability Distributions of Ellipticity , 2013, 1309.7844.

[73]  J. Anthony Tyson,et al.  THE ELLIPTICITY DISTRIBUTION OF AMBIGUOUSLY BLENDED OBJECTS , 2014, 1406.1506.

[74]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[75]  S. Harmeling,et al.  Image analysis for cosmology: results from the GREAT10 Galaxy Challenge , 2012, 1202.5254.

[76]  R. Mendez,et al.  Faint Blue Objects in the Hubble Deep Field-South Revealed: White Dwarfs, Subdwarfs, and Quasars , 2005, astro-ph/0507530.

[77]  J. Hill,et al.  Constraining Multiplicative Bias in CFHTLenS Weak Lensing Shear Data , 2016, 1601.05720.

[78]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[79]  Nick Kaiser A New Shear Estimator for Weak-Lensing Observations , 2000 .

[80]  M. Cropper,et al.  On scale-dependent cosmic shear systematic effects , 2015, 1507.05334.

[81]  Alexandre Refregier,et al.  Shapelets — II. A method for weak lensing measurements , 2003 .

[82]  H. Hoekstra,et al.  Hubble Space Telescope Weak-Lensing Study of the z=0.83 Cluster MS 1054–03 , 1999, astro-ph/9910487.

[83]  M. Bremer,et al.  M dwarfs at large heliocentric distances , 2007, 0711.2457.

[84]  Michael D. Schneider,et al.  GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology , 2014, 1412.1825.

[85]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[86]  P. Hall,et al.  A Measurement of Weak Lensing by Large-Scale Structure in Red-Sequence Cluster Survey Fields , 2002, astro-ph/0202285.

[87]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[88]  Michael Hirsch,et al.  Measurement and calibration of noise bias in weak lensing galaxy shape estimation , 2012, 1203.5049.

[89]  Stars in the Hubble Ultra Deep Field , 2004, astro-ph/0412097.