A stable multi-scale kernel for topological machine learning

Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.

[1]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[2]  Aaron B. Adcock,et al.  The Ring of Algebraic Functions on Persistence Bar Codes , 2013, 1304.0530.

[3]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[4]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[5]  Maks Ovsjanikov,et al.  Persistence-Based Structural Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Bo Li,et al.  Shape Retrieval of Non-Rigid 3D Human Models , 2014, 3DOR@Eurographics.

[7]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[8]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[9]  Christoph H. Lampert,et al.  Enforcing topological constraints in random field image segmentation , 2011, CVPR 2011.

[10]  Moo K. Chung,et al.  Topology-Based Kernels With Application to Inference Problems in Alzheimer's Disease , 2011, IEEE Transactions on Medical Imaging.

[11]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[12]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[13]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[14]  Leonidas J. Guibas,et al.  Persistence-based segmentation of deformable shapes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[15]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[16]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[17]  Afra Zomorodian,et al.  Computational topology , 2010 .

[18]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..

[19]  Moo K. Chung,et al.  Persistence Diagrams of Cortical Surface Data , 2009, IPMI.

[20]  Leonidas J. Guibas,et al.  Persistence-based clustering in riemannian manifolds , 2011, SoCG '11.

[21]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[22]  Chao Chen,et al.  Segmenting the Papillary Muscles and the Trabeculae from High Resolution Cardiac CT through Restoration of Topological Handles , 2013, IPMI.

[23]  Chao Chen,et al.  Efficient Computation of Persistent Homology for Cubical Data , 2012 .

[24]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[25]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[26]  Ulrich Bauer,et al.  Distributed Computation of Persistent Homology , 2014, ALENEX.

[27]  Leonidas J. Guibas,et al.  Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.

[28]  C. Berg,et al.  Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions , 1984 .

[29]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[30]  J. García-cuerva,et al.  Fourier Analysis and Partial Differential Equations , 2001 .

[31]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[32]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[33]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[34]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..