Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.

[1]  M. Inui,et al.  Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation , 2010, Applied Microbiology and Biotechnology.

[2]  A. Reiner Xylitol and d-Arabitol Toxicities Due to Derepressed Fructose, Galactitol, and Sorbitol Phosphotransferases of Escherichia coli , 1977, Journal of bacteriology.

[3]  H. Woo,et al.  Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization , 2014, Applied Microbiology and Biotechnology.

[4]  Wolfgang Wiechert,et al.  Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments , 2013, Biotechnology and bioengineering.

[5]  V. Wendisch,et al.  Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. , 2011, Journal of biotechnology.

[6]  U. Jenal,et al.  Genetic Analysis of a Novel Pathway for d-Xylose Metabolism in Caulobacter crescentus , 2006, Journal of bacteriology.

[7]  Devin G. Barrett,et al.  Poly(triol α-ketoglutarate) as Biodegradable, Chemoselective, and Mechanically Tunable Elastomers , 2008 .

[8]  G. Seibold,et al.  Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of l-lysine production strains , 2010, Applied Microbiology and Biotechnology.

[9]  L. Trahan Xylitol: a review of its action on mutans streptococci and dental plaque--its clinical significance. , 1995, International dental journal.

[10]  R. P. Ross,et al.  Heterologous Expression of Lactose- and Galactose-Utilizing Pathways from Lactic Acid Bacteria in Corynebacterium glutamicum for Production of Lysine in Whey , 2004, Applied and Environmental Microbiology.

[11]  J. D. de Winde,et al.  Establishment of Oxidative d-Xylose Metabolism in Pseudomonas putida S12 , 2009, Applied and Environmental Microbiology.

[12]  Wolfgang Wiechert,et al.  Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms , 2012, Microbial Cell Factories.

[13]  H. Sahm,et al.  Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon , 1993, Journal of bacteriology.

[14]  R. Weimberg Pentose oxidation by Pseudomonas fragi. , 1961, The Journal of biological chemistry.

[15]  L. Blank,et al.  D-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120. , 2015, Environmental microbiology.

[16]  K Madhavan Nampoothiri,et al.  Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine , 2012, Microbial biotechnology.

[17]  Marco Oldiges,et al.  An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform , 2012, Microbial Cell Factories.

[18]  G. Barth,et al.  Overproduction and secretion of α-ketoglutaric acid by microorganisms , 2011, Applied Microbiology and Biotechnology.

[19]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[20]  M. Inui,et al.  A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. , 2003, Microbiology.

[21]  Wolfgang Wiechert,et al.  Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum , 2014, Microbial Cell Factories.

[22]  Masayuki Inui,et al.  Engineering of a Xylose Metabolic Pathway in Corynebacterium glutamicum , 2006, Applied and Environmental Microbiology.

[23]  J. Peterson,et al.  Evaluation of the hexokinase-glucose-6-phosphate dehydrogenase method of determination of glucose in urine. , 1968, Analytical biochemistry.

[24]  J. London,et al.  Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei , 1982, Journal of bacteriology.

[25]  L. Eggeling,et al.  The E2 Domain of OdhA of Corynebacterium glutamicum Has Succinyltransferase Activity Dependent on Lipoyl Residues of the Acetyltransferase AceF , 2010, Journal of bacteriology.

[26]  U. Sauer,et al.  d-Xylose Degradation Pathway in the Halophilic Archaeon Haloferax volcanii , 2009, The Journal of Biological Chemistry.

[27]  U. Stottmeister,et al.  White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses , 2005, Journal of Industrial Microbiology and Biotechnology.

[28]  J. Kalinowski,et al.  Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. , 2006, Journal of biotechnology.

[29]  M. Penttilä,et al.  Metabolic engineering applications to renewable resource utilization. , 2000, Current opinion in biotechnology.

[30]  M. Inui,et al.  Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars , 2009, Applied Microbiology and Biotechnology.