Analysis of Nonlinear Phenomena in a Thermal Micro-Actuator With a Built-In Thermal Position Sensor

An analysis of nonlinear effects associated with a chevron thermal micro-actuator with a built in thermal position sensor under static conditions is presented in this paper. The nonlinearities present in both actuator and sensor are studied. The phenomena considered for the sensor include: thermal coupling from actuator to sensor and temperature dependence of electrical resistivity. Those considered for the actuator include: non-uniform spatial distribution of temperature in arms, temperature dependency of thermal expansion coefficient, deviation of arm shape from straight line due to physical constraints, and temperature dependence of electrical resistivity.

[1]  Larry L. Howell,et al.  Surface micromachined force gauges: uncertainty and reliability , 2002 .

[2]  S. O. Reza Moheimani,et al.  Reducing Cross-Coupling in a Compliant XY Nanopositioner for Fast and Accurate Raster Scanning , 2010, IEEE Transactions on Control Systems Technology.

[3]  H. Espinosa,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Thermal Actuator for Nanoscale in Situ Microscopy Testing: Design and Characterization , 2022 .

[4]  Dannis Michel Brouwer,et al.  Single-mask thermal displacement sensor in MEMS , 2010 .

[5]  Mu Chiao,et al.  Electrothermal responses of lineshape microstructures , 1996 .

[6]  S. S. Aphale,et al.  High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties , 2008, Nanotechnology.

[7]  G. Binnig,et al.  Scanning tunneling microscopy , 1984 .

[8]  Gerd K. Binnig,et al.  Scanning Tunneling Microscope , 2020, Definitions.

[9]  S. O. Reza Moheimani,et al.  Tracking of Triangular References Using Signal Transformation for Control of a Novel AFM Scanner Stage , 2012, IEEE Transactions on Control Systems Technology.

[10]  Haralampos Pozidis,et al.  A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device , 2004 .

[11]  A Bazaei,et al.  A Micromachined Nanopositioner With On-Chip Electrothermal Actuation and Sensing , 2010, IEEE Electron Device Letters.

[12]  G. Binnig,et al.  A micromechanical thermal displacement sensor with nanometre resolution , 2005 .

[13]  Masayuki Abe,et al.  Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy , 2008, Science.

[14]  Y. Yong,et al.  Atomic force microscopy with a 12-electrode piezoelectric tube scanner. , 2010, The Review of scientific instruments.

[15]  S. O. Reza Moheimani,et al.  A compact XYZ scanner for fast atomic force microscopy in constant force contact mode , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[16]  K. R. Williams,et al.  A high-performance dipole surface drive for large travel and force , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[17]  Amir Khajepour,et al.  Design and modeling of a MEMS bidirectional vertical thermal actuator , 2004 .

[18]  Jian Chen,et al.  Design, fabrication, sensor fusion, and control of a micro X–Y stage media platform for probe-based storage systems , 2009 .

[19]  T. Ando,et al.  High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work , 2005 .

[20]  S.O.R. Moheimani,et al.  Achieving Subnanometer Precision in a MEMS-Based Storage Device During Self-Servo Write Process , 2008, IEEE Transactions on Nanotechnology.

[21]  Electro, thermal and elastic characterizations of suspended micro beams , 1998 .

[22]  M. Sinclair,et al.  A high force low area MEMS thermal actuator , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[23]  S. Gonda,et al.  Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology , 1999 .

[24]  Yuen Kuan Yong,et al.  Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning , 2009, IEEE Transactions on Nanotechnology.

[25]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[26]  Timothy W. McLain,et al.  Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator , 2002 .

[27]  Don L. DeVoe,et al.  Large-force electrothermal linear micromotors , 2004 .

[28]  A. Voloshin,et al.  Novel MEMS-Based Technology for Measuring the Mechanical Properties of a Live Biological Cell , 2008 .

[29]  A. Sebastian,et al.  Control of MEMS-Based Scanning-Probe Data-Storage Devices , 2007, IEEE Transactions on Control Systems Technology.

[30]  Larry L. Howell,et al.  Simulation, measurement, and asymmetric buckling of thermal microactuators , 2006 .

[31]  G. Binnig,et al.  Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .

[32]  L. Howell,et al.  Actuators for Micropositioners and Nanopositioners , 2006 .

[33]  Robert K. Messenger,et al.  Piezoresistive Feedback Control of a MEMS Thermal Actuator , 2009, Journal of Microelectromechanical Systems.

[34]  L. L. Chu,et al.  Bent-beam electrothermal actuators-Part II: Linear and rotary microengines , 2001 .

[35]  U. Dürig Fundamentals of micromechanical thermoelectric sensors , 2005 .

[36]  Fathi H. Ghorbel,et al.  A singular perturbation analysis and control of a new nanomanipulator , 2010, 49th IEEE Conference on Decision and Control (CDC).

[37]  Yong-Kweon Kim,et al.  Silicon micro XY-stage with a large area shuttle and no-etching holes for SPM-based data storage , 2003 .

[38]  L. Phinney,et al.  Effects of mechanical stress on thermal microactuator performance , 2010 .

[39]  Yasumasa Okada,et al.  Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K , 1984 .

[40]  M Ellis,et al.  A silicon electrothermal rotational micro motor measuring one cubic millimeter , 2006 .