A stabilized POD model for turbulent flows over a range of Reynolds numbers: Optimal parameter sampling and constrained projection

Abstract We present a reduced basis technique for long-time integration of parametrized incompressible turbulent flows. The new contributions are threefold. First, we propose a constrained Galerkin formulation that corrects the standard Galerkin statement by incorporating prior information about the long-time attractor. For explicit and semi-implicit time discretizations, our statement reads as a constrained quadratic programming problem where the objective function is the Euclidean norm of the error in the reduced Galerkin (algebraic) formulation, while the constraints correspond to bounds for the maximum and minimum value of the coefficients of the N-term expansion. Second, we propose an a posteriori error indicator, which corresponds to the dual norm of the residual associated with the time-averaged momentum equation. We demonstrate that the error indicator is highly-correlated with the error in mean flow prediction, and can be efficiently computed through an offline/online strategy. Third, we propose a Greedy algorithm for the construction of an approximation space/procedure valid over a range of parameters; the Greedy is informed by the a posteriori error indicator developed in this paper. We illustrate our approach and we demonstrate its effectiveness by studying the dependence of a two-dimensional turbulent lid-driven cavity flow on the Reynolds number.

[1]  Traian Iliescu,et al.  Data-Driven Filtered Reduced Order Modeling of Fluid Flows , 2017, SIAM J. Sci. Comput..

[2]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[3]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[4]  Benjamin Stamm,et al.  Model Order Reduction for Problems with Large Convection Effects , 2018, Computational Methods in Applied Sciences.

[5]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[6]  Bernard Haasdonk,et al.  Convergence Rates of the POD–Greedy Method , 2013 .

[7]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[8]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[9]  Habib N. Najm,et al.  Bayesian estimation of Karhunen-Loève expansions; A random subspace approach , 2016, J. Comput. Phys..

[10]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[11]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[12]  Traian Iliescu,et al.  SUPG reduced order models for convection-dominated convection–diffusion–reaction equations , 2014 .

[13]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[14]  Angelo Iollo,et al.  SYSTEM IDENTIFICATION IN TUMOR GROWTH MODELING USING SEMI-EMPIRICAL EIGENFUNCTIONS , 2012 .

[15]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[16]  Earl H. Dowell,et al.  Stabilization of projection-based reduced order models of the Navier–Stokes , 2012 .

[17]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[18]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[19]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[20]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[21]  Y. Maday,et al.  A Two-grid Finite-element/reduced Basis Scheme for the Approximation of the Solution of Parameter Dependent P.d.e , 2009 .

[22]  Steven L. Brunton,et al.  Machine Learning Control – Taming Nonlinear Dynamics and Turbulence , 2016, Fluid Mechanics and Its Applications.

[23]  Christian Himpe,et al.  Hierarchical Approximate Proper Orthogonal Decomposition , 2016, SIAM J. Sci. Comput..

[24]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[25]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[26]  Bernd R. Noack,et al.  From snapshots to modal expansions – bridging low residuals and pure frequencies , 2016, Journal of Fluid Mechanics.

[27]  Seckin Gokaltun,et al.  Constrained reduced-order models based on proper orthogonal decomposition , 2017 .

[28]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[29]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[30]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[31]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[32]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[33]  Lars Davidson,et al.  Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition , 1998 .

[34]  A. Quarteroni,et al.  Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .

[35]  Edmond Chow,et al.  A cross-validatory method for dependent data , 1994 .

[36]  Eusebio Valero,et al.  Local POD Plus Galerkin Projection in the Unsteady Lid-Driven Cavity Problem , 2011, SIAM J. Sci. Comput..

[37]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[38]  Steven L. Brunton,et al.  Constrained sparse Galerkin regression , 2016, Journal of Fluid Mechanics.

[39]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[40]  Masayuki Yano,et al.  A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations , 2014, SIAM J. Sci. Comput..

[41]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for fluid flows: Burgers equation , 2013, 1308.3276.

[42]  Zhu Wang,et al.  Approximate Deconvolution Reduced Order Modeling , 2015, 1510.02726.

[43]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[44]  Bernd R. Noack,et al.  Identification strategies for model-based control , 2013 .

[45]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[46]  A. Debussche,et al.  IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS , 2022 .

[47]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[48]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[49]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[50]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[51]  Maciej Balajewicz,et al.  A New Approach to Model Order Reduction of the Navier-Stokes Equations , 2012 .

[52]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[53]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[54]  Jeffrey S. Racine,et al.  Consistent cross-validatory model-selection for dependent data: hv-block cross-validation , 2000 .

[55]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[56]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .

[57]  Gianluigi Rozza,et al.  Reduced-order semi-implicit schemes for fluid-structure interaction problems , 2017, 1711.10829.

[58]  G. Rozza,et al.  POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations , 2016 .

[59]  Nadine Aubry,et al.  Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions , 1992 .

[60]  R. Zimmermann,et al.  Interpolation-based reduced-order modelling for steady transonic flows via manifold learning , 2014 .

[61]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[62]  Jens L. Eftang,et al.  An hp certified reduced basis method for parametrized parabolic partial differential equations , 2011 .

[63]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[64]  Erwan Liberge,et al.  A minimum residual projection to build coupled velocity-pressure POD-ROM for incompressible Navier-Stokes equations , 2015, Commun. Nonlinear Sci. Numer. Simul..

[65]  Gianluigi Rozza,et al.  Advances in Reduced order modelling for CFD: vortex shedding around a circular cylinder using a POD-Galerkin method , 2017 .

[66]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[67]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[68]  Alfio Quarteroni,et al.  An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems , 2016 .

[69]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[70]  Steven A. Orszag,et al.  Order and disorder in two- and three-dimensional Bénard convection , 1984, Journal of Fluid Mechanics.

[71]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[72]  D. Rovas,et al.  A blackbox reduced-basis output bound method for noncoercive linear problems , 2002 .

[73]  Matthew F. Barone,et al.  Stable Galerkin reduced order models for linearized compressible flow , 2009, J. Comput. Phys..

[74]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[75]  David Amsallem,et al.  An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .

[76]  Pierre Sagaut,et al.  Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow , 2003, Journal of Fluid Mechanics.

[77]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems , 2007 .

[78]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[79]  Alois Steindl,et al.  Methods for dimension reduction and their application in nonlinear dynamics , 2001 .

[80]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[81]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[82]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[83]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[84]  B. Bouriquet,et al.  Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics , 2016, 1611.02219.

[85]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[86]  Yvon Maday,et al.  A reduced basis element method for the steady stokes problem , 2006 .

[87]  M. Bergmann Optimisation aérodynamique par réduction de modèle POD et contrôle optimal : application au sillage laminaire d'un cylindre circulaire , 2004 .

[88]  Alessandro Alla,et al.  Nonlinear Model Order Reduction via Dynamic Mode Decomposition , 2016, SIAM J. Sci. Comput..

[89]  Patrick Gallinari,et al.  Reduced Basis’ Acquisition by a Learning Process for Rapid On-line Approximation of Solution to PDE’s: Laminar Flow Past a Backstep , 2017 .

[90]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .