Enzymatic synthesis of β-lactam acids (review)

[1]  A. M. Vélez,et al.  High-throughput strategies for penicillin G acylase production in rE. coli fed-batch cultivations , 2014, BMC Biotechnology.

[2]  M. Moo-young,et al.  Biotechnological advances on penicillin G acylase: pharmaceutical implications, unique expression mechanism and production strategies. , 2013, Biotechnology advances.

[3]  Michal Grulich,et al.  Perspectives and industrial potential of PGA selectivity and promiscuity. , 2013, Biotechnology advances.

[4]  M. Moo-young,et al.  Integrated development of an effective bioprocess for extracellular production of penicillin G acylase in Escherichia coli and its subsequent one-step purification. , 2012, Journal of biotechnology.

[5]  Ana Cauerhff,et al.  Recent trends in biocatalysis engineering. , 2012, Bioresource technology.

[6]  A. V. Sklyarenko,et al.  Ionization constants and solubility of compounds involved in enzymatic synthesis of aminopenicillins and aminocephalosporins , 2011, Bioprocess and biosystems engineering.

[7]  R. Rodrigues,et al.  Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: drawbacks and perspectives. , 2010, Current medicinal chemistry.

[8]  J. García,et al.  Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli , 2010 .

[9]  J. Palomo Modulation of Enzymes Selectivity via Immobilization , 2009 .

[10]  A. Illanes,et al.  Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of β-lactam compounds in organic medium , 2008 .

[11]  O. Abián,et al.  Thermodynamically Controlled Synthesis of Amide Bonds Catalyzed by Highly Organic Solvent‐Resistant Penicillin Acylase Derivatives , 2008, Biotechnology progress.

[12]  O. Singh,et al.  The realm of penicillin G acylase in β-lactam antibiotics , 2008 .

[13]  B. Vasiljević,et al.  High‐level production and covalent immobilization of Providencia rettgeri penicillin G acylase (PAC) from recombinant Pichia pastoris for the development of a novel and stable biocatalyst of industrial applicability , 2006, Biotechnology and bioengineering.

[14]  M. Moo-young,et al.  Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli , 2006, Applied Microbiology and Biotechnology.

[15]  R. Sheldon,et al.  Immobilization of Penicillin G Acylase: The Key to Optimum Performance , 2005 .

[16]  R. Fernández-Lafuente,et al.  Penicillin G acylase catalyzed acylation of 7-ACA in aqueous two-phase systems using kinetically and thermodynamically controlled strategies: improved enzymatic synthesis of 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid , 2005 .

[17]  C. Chou,et al.  Roles of DegP in Prevention of Protein Misfolding in the Periplasm upon Overexpression of Penicillin Acylase in Escherichia coli , 2003, Journal of bacteriology.

[18]  R. Elander Industrial production of β-lactam antibiotics , 2003, Applied Microbiology and Biotechnology.

[19]  P. Halling,et al.  Enzymatic synthesis of beta-lactam antibiotics via direct condensation. , 2002, Journal of biotechnology.

[20]  V. B. Kurochkina,et al.  Kinetic and Thermodynamic Approach to Design of Processes for Enzymatic Synthesis of Betalactams , 2002 .

[21]  R. Fernández-Lafuente,et al.  Modulation of penicillin acylase properties via immobilization techniques: one-pot chemoenzymatic synthesis of Cephamandole from Cephalosporin C. , 2001, Bioorganic & medicinal chemistry letters.

[22]  D. Janssen,et al.  Characterization of the beta-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies. , 2000, Protein engineering.

[23]  K. Wilson,et al.  Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. , 2000, Journal of molecular biology.

[24]  V. B. Kurochkina,et al.  Methodological approach to development of enzymatic technologies for semisynthetic betalactam antibiotic production , 2000 .

[25]  Chan Beum Park,et al.  Penicillin acylase-catalyzed synthesis of cefazolin in water-solvent mixtures: enhancement effect of ethyl acetate and carbon tetrachloride on the synthetic yield , 2000 .

[26]  C. Mateo,et al.  Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment* , 2000, Enzyme and microbial technology.

[27]  Shaw,et al.  Enzymatic synthesis of cephalothin by penicillin G acylase* , 2000, Enzyme and microbial technology.

[28]  Ignatova,et al.  The relative importance of intracellular proteolysis and transport on the yield of the periplasmic enzyme penicillin amidase in Escherichia coli* , 2000, Enzyme and microbial technology.

[29]  J. García,et al.  Evaluation of different enzymes as catalysts for the production of β-lactam antibiotics following a kinetically controlled strategy , 1999 .

[30]  R. Fernández-Lafuente,et al.  The presence of methanol exerts a strong and complex modulation of the synthesis of different antibiotics by immobilized penicillin G acylase , 1998 .

[31]  R. Fernández-Lafuente,et al.  A criterion for the selection of monophasic solvents for enzymatic synthesis , 1998 .

[32]  A. Roos,et al.  Penicillin Acylase in the Industrial Production of β-Lactam Antibiotics , 1998 .

[33]  R. Fernández-Lafuente,et al.  One-Pot Chemoenzymatic Synthesis of 3‘-Functionalized Cephalosporines (Cefazolin) by Three Consecutive Biotransformations in Fully Aqueous Medium , 1997 .

[34]  R. Fernández-Lafuente,et al.  Chemoenzymatic one-pot synthesis of cefazolin from cephalosporin C in fully aqueous medium, involving three consecutive biotransformations catalyzed by D-aminoacid oxidase, glutaryl acylase and penicillin G acylase , 1997 .

[35]  V. Meevootisom,et al.  Localization and characterization of inclusion bodies in recombinant Escherichia coli cells overproducing penicillin G acylase , 1997, Applied Microbiology and Biotechnology.

[36]  R. Fernández-Lafuente,et al.  Dynamic reaction design of enzymic biotransformations in organic media: equilibrium‐controlled synthesis of antibiotics by penicillin G acylase , 1996, Biotechnology and applied biochemistry.

[37]  R. Fernández-Lafuente,et al.  Synthesis of antibiotics (cephaloglycin) catalyzed by penicillin G acylase: Evaluation and optimization of different synthetic approaches , 1996 .

[38]  Min-Gon Kim,et al.  Penicillin acylase-catalyzed synthesis of β-lactam antibiotics in water-methanol mixtures: effect of cosolvent content and chemical nature of substrate on reaction rates and yields , 1996 .

[39]  Min-Gon Kim,et al.  Effect of organic solvents on penicillin acylase-catalyzed reactions: interaction of organic solvents with enzymes , 1996 .

[40]  Min-Gon Kim,et al.  Penicillin acylase-catalyzed synthesis of pivampicillin: Effect of reaction variables and organic cosolvents , 1996 .

[41]  G. Branlant,et al.  Periplasmic aggregation limits the proteolytic maturation of the Escherichia coli Penicillin G amidase precursor polypeptide , 1994, Applied Microbiology and Biotechnology.

[42]  N. Petkov,et al.  New tetrazole-1-acetic acid esters for enzymatic synthesis of cefazolin , 1992 .

[43]  R. Fernández-Lafuente,et al.  Enzyme reaction engineering: synthesis of antibiotics catalysed by stabilized penicillin G acylase in the presence of organic cosolvents. , 1991, Enzyme and microbial technology.

[44]  R. Fernández-Lafuente,et al.  Equilibrium controlled synthesis of cephalothin in water-cosolvent systems by stabilized penicillin G acylase , 1991 .

[45]  A. Margolin,et al.  Substrate specificity of penicillin amidase from E. coli. , 1980, Biochimica et biophysica acta.

[46]  R. Boča Molecular orbital study of coordinated dioxygen III. Electronic factors of dioxygen activation on Mn, Fe, Co, Ni and Cu complexes , 1980 .

[47]  V. Svedas,et al.  Enzymatic synthesis of β-lactam antibiotics: A thermodynamic background , 1980 .

[48]  Margolin Al,et al.  Study of E. coli penicillin amidase. The pH dependence of the equilibrium constant of ampicillin enzymatic hydrolysis , 1978 .

[49]  M. Vannice,et al.  The synthesis of hydrocarbons from CO and H2 over well-characterized supported PtFe catalysts , 1976 .

[50]  W. Bretz,et al.  Red Marine Algae Lithothamnion calcareum Supports Dental Enamel Mineralization , 2023, Marine drugs.

[51]  V. Svedas,et al.  Bioinformatic analysis and molecular modeling reveal mutation bD484N to stabilize penicillin acylase and improve its catalytic performance in alkaline medium , 2013 .

[52]  Michael C. Flickinger,et al.  Encyclopedia of industrial biotechnology : bioprocess, bioseparation, and cell technology , 2010 .

[53]  R. Fernández-Lafuente,et al.  Immobilization of the acylase from Escherichia coli on glyoxyl-agarose gives efficient catalyst for the synthesis of cephalosporins. , 2008, Enzyme and microbial technology.

[54]  C. Chou,et al.  Arabinose‐Induction of lac‐Derived Promoter Systems for Penicillin Acylase Production in Escherichia coli , 2006, Biotechnology progress.

[55]  C. Chou,et al.  High‐Level Gene Expression for Recombinant Penicillin Acylase Production Using the araB Promoter System in Escherichia coli , 2006, Biotechnology progress.

[56]  R. Fernández-Lafuente,et al.  Influence of Substrate Structure on PGA‐Catalyzed Acylations. Evaluation of Different Approaches for the Enzymatic Synthesis of Cefonicid , 2005 .

[57]  U. Giesecke,et al.  Industrial enzymatic production of cephalosporin-based beta-lactams. , 2004, Advances in biochemical engineering/biotechnology.

[58]  Правительства Москвы,et al.  Biotechnology: State of the Art and Prospects of Development , 2004, Applied Biochemistry and Microbiology.

[59]  Justo Pedroche,et al.  Epoxy Sepabeads: A Novel Epoxy Support for Stabilization of Industrial Enzymes via Very Intense Multipoint Covalent Attachment , 2002, Biotechnology progress.

[60]  A. Bruggink Synthesis of β-Lactam antibiotics : chemistry, biocatalysis & process integration , 2001 .

[61]  A. Bruggink Synthesis of β-Lactam Antibiotics , 2001 .

[62]  Anja E.M. Janssen,et al.  Thermodynamically controlled synthesis of cefamandole , 1999 .

[63]  R. Fernández-Lafuente,et al.  Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives: Dramatic stabilization of penicillin acylase versus organic solvents , 1999 .

[64]  J. H. Kim,et al.  The Effect of 2-Mercapto-5-Methyl-1,3,4-Thiadiazole on Enzymatic Synthesis of Cefazolin , 1998, Applied biochemistry and biotechnology.

[65]  Б КурочкинаВ,et al.  Об устойчивости некоторых цефалоспоринов в растворах. Цефазолин, цефазедон, цефаклор. , 1994 .

[66]  J. Elks Structural formulae and nomenclature of the cephalosporin antibiotics. , 1987, Drugs.