The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs

BackgroundComparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting with the sequences organized into a database management system and aligned to reveal their higher-order structure, and patterns of conservation and variation for organisms that span the phylogenetic tree, has been collected and analyzed. This type of information can be fundamental for and have an influence on the study of phylogenetic relationships, RNA structure, and the melding of these two fields.ResultsWe have prepared a large web site that disseminates our comparative sequence and structure models and data. The four major types of comparative information and systems available for the three ribosomal RNAs (5S, 16S, and 23S rRNA), transfer RNA (tRNA), and two of the catalytic intron RNAs (group I and group II) are: (1) Current Comparative Structure Models; (2) Nucleotide Frequency and Conservation Information; (3) Sequence and Structure Data; and (4) Data Access Systems.ConclusionsThis online RNA sequence and structure information, the result of extensive analysis, interpretation, data collection, and computer program and web development, is accessible at our Comparative RNA Web (CRW) Site http://www.rna.icmb.utexas.edu. In the future, more data and information will be added to these existing categories, new categories will be developed, and additional RNAs will be studied and presented at the CRW Site.

[1]  [Secondary and topographic structure of ribosomal RNA 16S of Escherichia coli]. , 1980, Comptes rendus des seances de l'Academie des sciences. Serie D, Sciences naturelles.

[2]  R. Gutell,et al.  Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. , 2000, Molecular phylogenetics and evolution.

[3]  H. Noller,et al.  Secondary structure of 16S ribosomal RNA. , 1981, Science.

[4]  C. Zwieb,et al.  Secondary structure comparisons between small subunit ribosomal RNA molecules from six different species. , 1981, Nucleic acids research.

[5]  Murray N. Schnare,et al.  A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993 , 1993, Nucleic Acids Res..

[6]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[7]  B L Maidak,et al.  The RDP-II (Ribosomal Database Project) , 2001, Nucleic Acids Res..

[8]  R. Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. , 1993, Nucleic acids research.

[9]  R. Gutell,et al.  A comparative database of group I intron structures. , 1994, Nucleic acids research.

[10]  J. Neefs,et al.  Compilation of small ribosomal subunit RNA sequences. , 1991, Nucleic acids research.

[11]  Jamie J. Cannone,et al.  Group I intron lateral transfer between red and brown algal ribosomal RNA , 2001, Current Genetics.

[12]  Yves Van de Peer,et al.  The European Large Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[13]  H. Feldmann,et al.  Serine specific transfer ribonucleic acids. XIV. Comparison of nucleotide sequences and secondary structure models. , 1966, Cold Spring Harbor symposia on quantitative biology.

[14]  D. Bhattacharya,et al.  Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. , 2000, Molecular biology and evolution.

[15]  G. Fox,et al.  Phylogenetic evidence for tertiary interactions in 16S-like ribosomal RNA. , 1989, Nucleic acids research.

[16]  R. Gutell,et al.  Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. , 1980, Nucleic acids research.

[17]  Ross A. Overbeek,et al.  The RDP (Ribosomal Database Project) , 1997, Nucleic Acids Res..

[18]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[19]  R. Gutell,et al.  Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. , 1994, Microbiological reviews.

[20]  D. Bartel,et al.  Phylogenetic analysis of tmRNA secondary structure. , 1996, RNA.

[21]  Yves Van de Peer,et al.  The European Small Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[22]  C. Darwin Charles Darwin The Origin of Species by means of Natural Selection or The Preservation of Favoured Races in the Struggle for Life , 2004 .

[23]  H. Zachau Serine Specific Transfer Ribonucleic Acids , 1968 .

[24]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Ross A. Overbeek,et al.  The ribosomal database project , 1992, Nucleic Acids Res..

[26]  Jiunn-Liang Chen,et al.  Secondary Structure of Vertebrate Telomerase RNA , 2000, Cell.

[27]  Walter E. Hill,et al.  The Ribosome : structure, function, and evolution , 1990 .

[28]  N. Larsen,et al.  Higher order interactions in 23s rRNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Gutell,et al.  Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma. , 2001, Molecular biology and evolution.

[30]  H. Noller,et al.  Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Ebel,et al.  Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. , 1981, Nucleic acids research.

[33]  ROY MARKHAM,et al.  Structure of Ribonucleic Acid , 1951, Nature.

[34]  James W. Brown,et al.  Phylogenetic analysis and evolution of RNase P RNA in proteobacteria , 1991, Journal of bacteriology.

[35]  S C Harvey,et al.  AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices. , 2001, Journal of molecular biology.

[36]  N. Pace,et al.  The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme , 1988, Cell.

[37]  D Gautheret,et al.  Identification of base-triples in RNA using comparative sequence analysis. , 1995, Journal of molecular biology.

[38]  D Gautheret,et al.  Predicting U-turns in ribosomal RNA with comparative sequence analysis. , 2000, Journal of molecular biology.

[39]  T. Steitz,et al.  Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain , 1997, Cell.

[40]  J. Harris,et al.  New insight into RNase P RNA structure from comparative analysis of the archaeal RNA. , 2001, RNA.

[41]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[42]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[43]  C. Zwieb Structure and function of signal recognition particle RNA. , 1989, Progress in nucleic acid research and molecular biology.

[44]  David K. Y. Chiu,et al.  Inferring consensus structure from nucleic acid sequences , 1991, Comput. Appl. Biosci..

[45]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs: Correction , 2002, BMC Bioinformatics.

[46]  Robin Ray Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures , 1993, Nucleic Acids Res..

[47]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information , 2021, Nucleic Acids Res..

[48]  T. Cech,et al.  Conserved sequences and structures of group I introns: building an active site for RNA catalysis--a review. , 1988, Gene.

[49]  R. Gutell,et al.  A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. , 1995, RNA.

[50]  R. Gutell,et al.  A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format. , 1990, Nucleic acids research.

[51]  Daniel P. Romero,et al.  A conserved secondary structure for telomerase RNA , 1991, Cell.

[52]  Mark Pagel,et al.  Major fungal lineages are derived from lichen symbiotic ancestors , 2022 .

[53]  D. S. Fields,et al.  An analysis of large rRNA sequences folded by a thermodynamic method. , 1996, Folding & design.

[54]  R. Gutell,et al.  A story: unpaired adenosine bases in ribosomal RNAs. , 2000, Journal of molecular biology.

[55]  R A Garrett,et al.  Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[57]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[58]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[59]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[60]  R. Gutell,et al.  Secondary structure model for 23S ribosomal RNA. , 1981, Nucleic acids research.

[61]  K. Umesono,et al.  Comparative and functional anatomy of group II catalytic introns--a review. , 1989, Gene.

[62]  R. Gutell,et al.  Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. , 1996, Journal of molecular biology.

[63]  R. Gutell,et al.  A compilation of large subunit RNA sequences presented in a structural format. , 1988, Nucleic acids research.

[64]  B. Dujon,et al.  Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. , 1982, Biochimie.

[65]  H. Noller,et al.  Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Levitt Detailed Molecular Model for Transfer Ribonucleic Acid , 1969, Nature.

[67]  Sergey Steinberg,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 2004, Nucleic Acids Res..

[68]  G. Stormo,et al.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. , 1992, Nucleic acids research.

[69]  H. Noller Structure of ribosomal RNA. , 1984, Annual review of biochemistry.

[70]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[71]  Y Van de Peer,et al.  Database on the structure of large ribosomal subunit RNA. , 1997, Nucleic acids research.

[72]  R. Gutell,et al.  Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. , 1983, Microbiological reviews.

[73]  C. Woese,et al.  5S RNA secondary structure , 1975, Nature.

[74]  H. Khorana,et al.  Nucleotide sequence studies on yeast phenylalanine sRNA. , 1966, Cold Spring Harbor symposia on quantitative biology.

[75]  C. Guthrie,et al.  Spliceosomal snRNAs. , 1988, Annual review of genetics.

[76]  C. Zwieb,et al.  Secondary structure of the large subunit ribosomal RNA from Escherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. , 1981, Nucleic acids research.

[77]  Rupert De Wachter,et al.  Collection of published 5S and 5.8S ribosomal RNA sequences , 1983, Nucleic Acids Res..

[78]  Kevin G. Jones,et al.  A Group I Intron in the Nuclear Small Subunit rRNA Gene of Cryptendoxyla hypophloia, an Ascomycetous Fungus: Evidence for a New Major Class of Group I Introns , 1999, Journal of Molecular Evolution.

[79]  J. T. Madison,et al.  Nucleotide Sequence of a Yeast Tyrosine Transfer RNA , 1966, Science.

[80]  R. Gutell,et al.  Additional Watson-Crick interactions suggest a structural core in large subunit ribosomal RNA. , 1989, Journal of biomolecular structure & dynamics.

[81]  R. Gutell,et al.  Comparative anatomy of 16-S-like ribosomal RNA. , 1985, Progress in nucleic acid research and molecular biology.

[82]  J L Olsen,et al.  Evidence for independent acquisition of group I introns in green algae. , 1993, Molecular biology and evolution.