Catalysis of an Essential Step in Vitamin B2 Biosynthesis by a Consortium of Broad Spectrum Hydrolases
暂无分享,去创建一个
A. Bacher | M. Fischer | H. Hohmann | D. Laudert | I. Haase | B. Illarionov | S. Sarge
[1] Elias W. Krumholz,et al. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks* , 2015, The Journal of Biological Chemistry.
[2] Nir London,et al. Covalent Docking Predicts Substrates for Haloalkanoate Dehalogenase Superfamily Phosphatases , 2014, Biochemistry.
[3] S. Neumann,et al. Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions , 2014, Biotechnology Letters.
[4] A. Bacher,et al. Enzymes from the Haloacid Dehalogenase (HAD) Superfamily Catalyse the Elusive Dephosphorylation Step of Riboflavin Biosynthesis , 2013, Chembiochem : a European journal of chemical biology.
[5] Kürşad Turgay,et al. Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis , 2012, Proceedings of the National Academy of Sciences.
[6] A. Bacher,et al. Biosynthesis of Vitamin B2: A Unique Way to Assemble a Xylene Ring , 2011, Chembiochem : a European journal of chemical biology.
[7] A. Bacher,et al. Biosynthesis of Vitamin B2 and Flavocoenzymes in Plants , 2011 .
[8] Robert H. White,et al. An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. , 2009, Biochemistry.
[9] Liran Carmel,et al. Genome-wide Analysis of Substrate Specificities of the Escherichia coli Haloacid Dehalogenase-like Phosphatase Family* , 2006, Journal of Biological Chemistry.
[10] Karen N. Allen,et al. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. , 2006, Journal of molecular biology.
[11] A. Bacher,et al. Biosynthesis of vitamin B2 in plants , 2006 .
[12] Markus Fischer,et al. Biosynthesis of flavocoenzymes. , 2005, Natural product reports.
[13] Karen N. Allen,et al. Phosphoryl group transfer: evolution of a catalytic scaffold. , 2004, Trends in biochemical sciences.
[14] K. Ochi,et al. RNA Polymerase Mutation Activates the Production of a Dormant Antibiotic 3,3′-Neotrehalosadiamine via an Autoinduction Mechanism in Bacillus subtilis* , 2004, Journal of Biological Chemistry.
[15] Robert H. White,et al. A member of a new class of GTP cyclohydrolases produces formylaminopyrimidine nucleotide monophosphates. , 2002, Biochemistry.
[16] A. Bacher,et al. Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase. , 2000, Phytochemistry.
[17] A. Bacher,et al. Biosynthesis of vitamin b2 (riboflavin). , 2000, Annual review of nutrition.
[18] A. Bacher,et al. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis , 1997, Journal of bacteriology.
[19] E V Koonin,et al. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. , 1994, Journal of molecular biology.
[20] A. Bacher,et al. Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli , 1993, Journal of bacteriology.
[21] A. Bacher,et al. Enzymatic Synthesis of Riboflavin and FMN Specifically Labeled with 13C in the Xylene Ring , 1987, Zeitschrift fur Naturforschung. C, Journal of biosciences.
[22] A. Bacher,et al. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine by heavy riboflavin synthase from Bacillus subtilis. , 1986, Biochemical and biophysical research communications.
[23] A. Bacher,et al. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphates. , 1984, The Journal of biological chemistry.
[24] G. Brown,et al. Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin , 1978, Journal of bacteriology.
[25] A. Bacher,et al. Biosynthesis of riboflavin. 6,7-Dimethyl-8-ribityllumazine 5'-phosphate is not a substrate for riboflavin synthase. , 1978, Biochimica et biophysica acta.
[26] G. Müller,et al. Notizen: Über die Akkumulation von Chorisminsäure bei Mutanten und Wildstämmen von Escherichia coli und Saccharomyces cerevisiae , 1967 .
[27] G. Plaut,et al. 4-(1'-D-RIBITYLAMINO)-5-AMINO-2,6-DIHYDROXYPYRIMIDINE, THE SECOND PRODUCT OF THE RIBOFLAVIN SYNTHETASE REACTION. , 1964, The Journal of biological chemistry.
[28] G. Plaut. Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. , 1963, The Journal of biological chemistry.