Quantum chemical study of the structure and thermochemistry of the five-membered nitrogen-containing heterocycles and their anions and radicals.
暂无分享,去创建一个
The nitrogen-containing heterocycles are of interest as high-energy-density materials for use as propellants and explosives, while the pyrolysis of these compounds is also important in understanding the evolution of unwanted NO and NO2 (NOx) from organic fuels such as coal and biomass. We have used ab initio and density functional methods to study the molecular structures and thermochemical properties of the five-membered nitrogen-containing heterocycles and their anions and radicals corresponding to respective heterolytic and homolytic loss of a hydrogen atom from either a nitrogen or carbon site. Many of these thermochemical properties have not previously been measured, especially for the heterocycles containing three and four nitrogen atoms. Using the theoretical methods CBS-APNO, G3, and G3B3, we calculate enthalpies of formation of 26.5, 42.4, 31.9, 63.7, 46.8, 81.0, and 79.0 kcal mol-1 for pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, 1H-tetrazole, and 2H-tetrazole. A correlation is developed between the number of nitrogen atoms in a heterocycle and its enthalpy, and we extrapolate this relationship to predict the enthalpy of formation of pentazole. N-H BDEs in the heterocycles typically increase with the number of nitrogen atoms in the molecule, while C-H BDEs are similar in all of the studied heterocycles, at around 120 kcal mol-1. In all cases the N-H BDEs are weaker than the C-H BDEs, suggesting abstraction of the N-H hydrogen atom is more likely. Deprotonation enthalpies and free energies reveal that the N-H protons become more acidic with increasing number of nitrogen atoms in the heterocycle. C-H protons are less acidic than N-H protons by ca. 49 kcal mol-1, or ca. 35 kcal mol-1 when adjacent to the NH group. Trends in N-H and C-H acidities can be qualitatively explained by electrostatic effects and electron affinities. From its use as a reference species in our calculations, we identify that the experimental enthalpy of pyrimidine (1,3-diazine) may be in error by ca. 1-3 kcal mol-1, and we recommend an enthalpy of formation of 44.8 +/- 1.0 kcal mol-1.