Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis

[1]  M. Hoeper Pharmacological therapy for patients with chronic thromboembolic pulmonary hypertension , 2015, European Respiratory Review.

[2]  M. Letarte,et al.  Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia , 2015, Front. Genet..

[3]  E. Wagner,et al.  Defective Angiogenesis Delays Thrombus Resolution: A Potential Pathogenetic Mechanism Underlying Chronic Thromboembolic Pulmonary Hypertension , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[4]  M. Letarte,et al.  Review: the enigmatic role of endoglin in the placenta. , 2014, Placenta.

[5]  J. López-Novoa,et al.  Membrane and soluble forms of endoglin in preeclampsia. , 2013, Current molecular medicine.

[6]  N. Morrell,et al.  The transforming growth factor‐β–bone morphogenetic protein type signalling pathway in pulmonary vascular homeostasis and disease , 2013, Experimental physiology.

[7]  N. Bauer,et al.  On the origin of microparticles: From “platelet dust” to mediators of intercellular communication , 2013, Pulmonary circulation.

[8]  Nnenna A. Finn,et al.  Intracellular and Extracellular miRNAs in Regulation of Angiogenesis Signaling. , 2012, Current angiogenesis.

[9]  R. Schiffelers,et al.  Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[10]  J. Yuan,et al.  Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding , 2012, European Respiratory Journal.

[11]  G. Prendergast,et al.  Role of RhoB in the Regulation of Pulmonary Endothelial and Smooth Muscle Cell Responses to Hypoxia , 2012, Circulation research.

[12]  F. Sánchez‐Madrid,et al.  Intercellular communication: diverse structures for exchange of genetic information , 2012, Nature Reviews Molecular Cell Biology.

[13]  Ramaroson Andriantsitohaina,et al.  Microparticles: targets and tools in cardiovascular disease. , 2011, Trends in pharmacological sciences.

[14]  A. Simon,et al.  Microparticles, Vascular Function, and Atherothrombosis , 2011, Circulation research.

[15]  R. Andriantsitohaina,et al.  Microparticles in angiogenesis: therapeutic potential. , 2011, Circulation research.

[16]  J. Freyssinet,et al.  Cellular Mechanisms Underlying the Formation of Circulating Microparticles , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[17]  Christian Weber,et al.  Microparticles: Protagonists of a Novel Communication Network for Intercellular Information Exchange , 2010, Circulation research.

[18]  J. López-Novoa,et al.  The physiological role of endoglin in the cardiovascular system. , 2010, American journal of physiology. Heart and circulatory physiology.

[19]  P. Quesenberry,et al.  Cellular phenotype switching and microvesicles. , 2010, Advanced drug delivery reviews.

[20]  M. Hristov,et al.  Platelet Microparticles Enhance the Vasoregenerative Potential of Angiogenic Early Outgrowth Cells After Vascular Injury , 2010, Circulation.

[21]  R. Andriantsitohaina,et al.  Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. , 2010, American journal of respiratory and critical care medicine.

[22]  Lisa X. Yu,et al.  Spontaneous Adult-Onset Pulmonary Arterial Hypertension Attributable to Increased Endothelial Oxidative Stress in a Murine Model of Hereditary Hemorrhagic Telangiectasia , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[23]  Djuro Josic,et al.  Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. , 2010, Experimental hematology.

[24]  M. Hristov,et al.  Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection , 2009, Science Signaling.

[25]  T. Renné,et al.  The ADMA/DDAH Pathway Regulates VEGF-Mediated Angiogenesis , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[26]  Qingbo Xu,et al.  Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. , 2009, Blood.

[27]  J. Freyssinet,et al.  Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. , 2009, Atherosclerosis.

[28]  Craig E. Higgins,et al.  TGF-β1-Induced Expression of the Poor Prognosis SERPINE1/PAI-1 Gene Requires EGFR Signaling: A New Target for Anti-EGFR Therapy , 2009, Journal of oncology.

[29]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[30]  A. Guha,et al.  Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells , 2008, Nature Cell Biology.

[31]  J. Freyssinet,et al.  Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. , 2008, American journal of respiratory and critical care medicine.

[32]  M. Wellner,et al.  β2-Integrins and Acquired Glycoprotein IIb/IIIa (GPIIb/IIIa) Receptors Cooperate in NF-κB Activation of Human Neutrophils*♦ , 2007, Journal of Biological Chemistry.

[33]  Craig E. Higgins,et al.  PAI-1 is a Critical Upstream Regulator of the TGF-β1/EGF-Induced Invasive Phenotype in Mutant p53 Human Cutaneous Squamous Cell Carcinoma , 2007, Journal of biomedicine & biotechnology.

[34]  B. Rothen‐Rutishauser,et al.  Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. , 2006, The American journal of pathology.

[35]  T. Libermann,et al.  Soluble endoglin contributes to the pathogenesis of preeclampsia , 2006, Nature Medicine.

[36]  M. Hristov,et al.  Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. , 2004, Blood.

[37]  M. Goumans,et al.  Endoglin promotes endothelial cell proliferation and TGF‐β/ALK1 signal transduction , 2004, The EMBO journal.

[38]  I. Hampson,et al.  CD105 prevents apoptosis in hypoxic endothelial cells , 2003, Journal of Cell Science.

[39]  Chung Lee,et al.  Over expression of endoglin in human prostate cancer suppresses cell detachment, migration and invasion , 2002, Oncogene.

[40]  T. Sanchez-Elsner,et al.  Extracellular and Cytoplasmic Domains of Endoglin Interact with the Transforming Growth Factor-β Receptors I and II* , 2002, The Journal of Biological Chemistry.

[41]  A. Régnault,et al.  TCR Activation of Human T Cells Induces the Production of Exosomes Bearing the TCR/CD3/ζ Complex1 , 2002, The Journal of Immunology.

[42]  J. Pouysségur,et al.  Transforming Growth Factor 1 (TGF- 1) Promotes Endothelial Cell Survival during In Vitro Angiogenesis via an Autocrine Mechanism Implicating TGF- Signaling , 2001 .

[43]  R. Derynck,et al.  TGF-beta receptor signaling. , 1997, Biochimica et biophysica acta.

[44]  C. Melief,et al.  B lymphocytes secrete antigen-presenting vesicles , 1996, The Journal of experimental medicine.

[45]  S. Tabibzadeh,et al.  Passive acquisition of leukocyte proteins is associated with changes in phosphorylation of cellular proteins and cell-cell adhesion properties. , 1994, The American journal of pathology.

[46]  J. Massagué,et al.  TGF‐β Receptors and TGF‐β Binding Proteoglycans: Recent Progress in Identifying Their Functional Properties , 1990 .

[47]  R. Johnstone,et al.  Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). , 1987, The Journal of biological chemistry.

[48]  I. Pabinger,et al.  Clinical significance of circulating microparticles for venous thrombo - embolism in cancer patients , 2012, Hämostaseologie.

[49]  D. Pisetsky,et al.  The role of microparticles in the pathogenesis of rheumatic diseases , 2010, Nature Reviews Rheumatology.

[50]  M. Wellner,et al.  Beta2-integrins and acquired glycoprotein IIb/IIIa (GPIIb/IIIa) receptors cooperate in NF-kappaB activation of human neutrophils. , 2007, The Journal of biological chemistry.

[51]  J. Pouysségur,et al.  Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. , 2001, Molecular and cellular biology.

[52]  J. Massagué,et al.  TGF-beta receptors and TGF-beta binding proteoglycans: recent progress in identifying their functional properties. , 1990, Annals of the New York Academy of Sciences.