Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.

Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria in these model biofilms develop characteristic multicellular structures through a series of distinct steps where cellular migration plays an important role. Despite the appearance of these characteristic developmental patterns in the model biofilms the available evidence suggest that the biofilm forming organisms do not possess comprehensive genetic programs for biofilm development. Instead the bacteria appear to have evolved a number of different mechanisms to optimize surface colonization, of which they express a subset in response to the prevailing environmental conditions. These mechanisms include the ability to regulate cellular adhesiveness and migration in response to micro-environmental signals including those secreted by the bacteria themselves.

[1]  Dale Kaiser,et al.  Coupling cell movement to multicellular development in myxobacteria , 2003, Nature Reviews Microbiology.

[2]  Y Comeau,et al.  Initiation of Biofilm Formation byPseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities , 2001, Journal of bacteriology.

[3]  A. Spiers,et al.  Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces , 2003, Molecular ecology.

[4]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[5]  S. Molin,et al.  Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants , 2003, Molecular microbiology.

[6]  R. Losick,et al.  Cannibalism by Sporulating Bacteria , 2003, Science.

[7]  David A. D'Argenio,et al.  Cyclic di-GMP as a bacterial second messenger. , 2004, Microbiology.

[8]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[9]  J. Saunders,et al.  The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. , 2001, FEMS microbiology ecology.

[10]  J J Heijnen,et al.  A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. , 2000, Biotechnology and bioengineering.

[11]  L. Zeef,et al.  Characterization of Nutrient-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm , 2004, Journal of bacteriology.

[12]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[13]  J. Ramos,et al.  Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein , 2003, Molecular microbiology.

[14]  S. Molin,et al.  Development and Dynamics of Pseudomonassp. Biofilms , 2000, Journal of bacteriology.

[15]  J. Ramos,et al.  Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.

[16]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[17]  Matthew R. Parsek,et al.  Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Lori L. Burrows,et al.  Biofilm Formation by Hyperpiliated Mutants of Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[19]  J. Kreft,et al.  Conflicts of interest in biofilms , 2004 .

[20]  Lian-Hui Zhang,et al.  MorA Defines a New Class of Regulators Affecting Flagellar Development and Biofilm Formation in Diverse Pseudomonas Species , 2004, Journal of bacteriology.

[21]  Andrew J. Schmidt,et al.  The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains , 2005, Journal of bacteriology.

[22]  A. Spiers,et al.  Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose , 2003, Molecular microbiology.

[23]  M. Wolfgang,et al.  Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression , 2002, Molecular microbiology.

[24]  M. Travisano,et al.  Strategies of microbial cheater control. , 2004, Trends in microbiology.

[25]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[26]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[27]  A. Griffin,et al.  Cooperation and competition in pathogenic bacteria , 2004, Nature.

[28]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[29]  Blaise R. Boles,et al.  Self-generated diversity produces "insurance effects" in biofilm communities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  O. White,et al.  Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[31]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[32]  N. Grishin,et al.  BTLCP proteins: a novel family of bacterial transglutaminase-like cysteine proteinases. , 2004, Trends in biochemical sciences.

[33]  E. Greenberg,et al.  Putative Exopolysaccharide Synthesis Genes Influence Pseudomonas aeruginosa Biofilm Development , 2004, Journal of bacteriology.

[34]  D. Queller Social evolution: Kinship is relative , 2004, Nature.

[35]  L. Halverson,et al.  Reduced Water Availability Influences the Dynamics, Development, and Ultrastructural Properties of Pseudomonas putida Biofilms , 2003, Journal of bacteriology.

[36]  T. Camesano,et al.  Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. , 2002, Biomacromolecules.

[37]  Blaise R. Boles,et al.  Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms , 2005, Molecular microbiology.

[38]  K. Lewis,et al.  Programmed Death in Bacteria , 2000, Microbiology and Molecular Biology Reviews.

[39]  J. Connolly,et al.  A Three-Component Regulatory System Regulates Biofilm Maturation and Type III Secretion in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[40]  S. Lory,et al.  A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes , 2004, Molecular microbiology.

[41]  E. Greenberg,et al.  A component of innate immunity prevents bacterial biofilm development , 2002, Nature.

[42]  A. Spiers,et al.  The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. , 2005, Microbiology.

[43]  P. Holden,et al.  Extracellular DNA in Single- and Multiple-Species Unsaturated Biofilms , 2005, Applied and Environmental Microbiology.

[44]  G. O’Toole,et al.  SadB Is Required for the Transition from Reversible to Irreversible Attachment during Biofilm Formation by Pseudomonas aeruginosa PA14 , 2004, Journal of bacteriology.

[45]  Roberto Kolter,et al.  Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms , 2003, Molecular microbiology.

[46]  Brian D Sykes,et al.  DNA Binding: a Novel Function of Pseudomonas aeruginosa Type IV Pili , 2005, Journal of bacteriology.

[47]  E. Sober,et al.  Summary of: ‘Unto Others. The evolution and psychology of unselfish behavior' , 1998 .

[48]  M. Parsek,et al.  Identification of psl, a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation , 2004, Journal of bacteriology.

[49]  J. Kreft,et al.  Biofilms promote altruism. , 2004, Microbiology.

[50]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[51]  I. Lasa,et al.  Bap: a family of surface proteins involved in biofilm formation. , 2006, Research in microbiology.

[52]  S. Lory,et al.  The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Redfield Is quorum sensing a side effect of diffusion sensing? , 2002, Trends in microbiology.

[54]  G. J. Velicer Social strife in the microbial world. , 2003, Trends in microbiology.

[55]  M. V. van Loosdrecht,et al.  Influence of interfaces on microbial activity. , 1990, Microbiological reviews.

[56]  J. Costerton,et al.  Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. , 2005, Microbiology.

[57]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[58]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[59]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[60]  M. Gilmore,et al.  The selective advantage of microbial fratricide. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  L. Eberl,et al.  Quorum Sensing in Biofilms: Gossip in Slime City , 2004 .

[62]  J. Kreft,et al.  The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. , 2005, Microbiology.

[63]  Ching-Hong Yang,et al.  Mutations Affecting Hyphal Colonization and Pyoverdine Production in Pseudomonads Antagonistic toward Phytophthora parasitica , 1994, Applied and environmental microbiology.

[64]  J. Claverys,et al.  New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor , 2006, Molecular microbiology.

[65]  S. Molin,et al.  Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. , 2005, Environmental microbiology.

[66]  A. Camper,et al.  Characterization of Phenotypic Changes inPseudomonas putida in Response to Surface-Associated Growth , 2001, Journal of bacteriology.

[67]  A. Arkin,et al.  Diversity in times of adversity: probabilistic strategies in microbial survival games. , 2005, Journal of theoretical biology.

[68]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.