Advanced state space methods for neural and clinical data

1. Introduction Z. Chen 2. Inference and learning in latent Markov models D. Barber and S. Chiappa Part I. State Space Methods for Neural Data: 3. State space methods for MEG source reconstruction M. Fukushima, O. Yamashita and M. Sato 4. Autoregressive modeling of fMRI time series: state space approaches and the general linear model A. Galka, M. Siniatchkin, U. Stephani, K. Groening, S. Wolff, J. Bosch-Bayard and T. Ozaki 5. State space models and their spectral decomposition in dynamic causal modeling R. Moran 6. Estimating state and parameters in state space models of spike trains J. H. Macke, L. Buesing and M. Sahani 7. Bayesian inference for latent stepping and ramping models of spike train data K. W. Latimer, A. C. Huk and J. W. Pillow 8. Probabilistic approaches to uncover rat hippocampal population codes Z. Chen, F. Kloosterman and M. A. Wilson 9. Neural decoding in motor cortex using state space models with hidden states W. Wu and S. Liu 10. State-space modeling for analysis of behavior in learning experiments A. C. Smith Part II. State Space Methods for Clinical Data: 11. Bayesian nonparametric learning of switching dynamics in cohort physiological time series: application in critical care patient monitoring L. H. Lehman, M. J. Johnson, S. Nemati, R. P. Adams and R. G. Mark 12. Identifying outcome-discriminative dynamics in multivariate physiological cohort time series S. Nemati and R. P. Adams 13. A dynamic point process framework for assessing heartbeat dynamics and cardiovascular functions Z. Chen and R. Barbieri 14. Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression M. B. Westover, S. Ching, M. M. Shafi, S. S. Cash and E. N. Brown 15. Signal quality indices for state-space electrophysiological signal processing and vice versa J. Oster and G. D. Clifford.

[1]  Alex Graves,et al.  Supervised Sequence Labelling with Recurrent Neural Networks , 2012, Studies in Computational Intelligence.

[2]  Zoubin Ghahramani,et al.  Choosing a Variable to Clamp: Approximate Inference Using Conditioned Belief Propagation , 2009 .

[3]  Justin Domke,et al.  Learning Graphical Model Parameters with Approximate Marginal Inference , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Daniel Povey,et al.  Large scale discriminative training for speech recognition , 2000 .

[5]  Veselin Stoyanov,et al.  Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure , 2011, AISTATS.

[6]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[7]  Benjamin M. Marlin,et al.  Unsupervised pattern discovery in electronic health care data using probabilistic clustering models , 2012, IHI '12.

[8]  S. Nemati,et al.  Model-based characterization of ventilatory stability using spontaneous breathing. , 2011, Journal of applied physiology.

[9]  Shamim Nemati,et al.  A Physiological Time Series Dynamics-Based Approach to Patient Monitoring and Outcome Prediction , 2014, IEEE Journal of Biomedical and Health Informatics.

[10]  Lalit R. Bahl,et al.  Maximum mutual information estimation of hidden Markov model parameters for speech recognition , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[12]  Vladimir Pavlovic,et al.  Discriminative Learning for Dynamic State Prediction , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Roger G. Mark,et al.  Circulatory response to passive and active changes in posture , 2003, Computers in Cardiology, 2003.

[14]  Madalena Costa,et al.  Multiscale entropy analysis of complex physiologic time series. , 2002, Physical review letters.

[15]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[17]  S Cerutti,et al.  Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. , 1988, Journal of hypertension.

[18]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[19]  Shlomo Havlin,et al.  Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis , 1996, Nature.

[20]  T. Heskes,et al.  Expectation propagation for approximate inference in dynamic bayesian networks , 2002, UAI 2002.

[21]  R. Memisevic An introduction to structured discriminative learning , 2006 .

[22]  Ryan P. Adams,et al.  Discovering shared cardiovascular dynamics within a patient cohort , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[23]  Jürgen Schmidhuber,et al.  Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks , 2006, ICML.

[24]  Michael J. Black,et al.  Modeling and decoding motor cortical activity using a switching Kalman filter , 2004, IEEE Transactions on Biomedical Engineering.

[25]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[26]  Phyllis K Stein,et al.  Traditional and Nonlinear Heart Rate Variability Are Each Independently Associated with Mortality after Myocardial Infarction , 2005, Journal of cardiovascular electrophysiology.

[27]  T. Lasko,et al.  Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data , 2013, PloS one.