Combining vision with audition and touch, in adults and in children

[1]  Roberto Arrighi,et al.  Meaningful auditory information enhances perception of visual biological motion. , 2009, Journal of vision.

[2]  G. Sandini,et al.  Cross-modal facilitation of visual and tactile motion , 2008 .

[3]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[4]  David C. Burr,et al.  Young Children Do Not Integrate Visual and Haptic Form Information , 2008, Current Biology.

[5]  Pete R. Jones,et al.  Development of Cue Integration in Human Navigation , 2008, Current Biology.

[6]  Wei Ji Ma,et al.  Spiking networks for Bayesian inference and choice , 2008, Current Opinion in Neurobiology.

[7]  A. Billard,et al.  Auditory motion affects visual biological motion processing , 2007, Neuropsychologia.

[8]  David C Burr,et al.  Fusion of Visual and Auditory Stimuli during Saccades: A Bayesian Explanation for Perisaccadic Distortions , 2007, The Journal of Neuroscience.

[9]  Jess Hartcher-O’Brien,et al.  Temporal Ventriloquism: Perceptual shifts forwards and backwards in time predicted by the maximum likelihood model , 2007 .

[10]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[11]  C. Granrud,et al.  Development of size constancy in children: A test of the proximal mode sensitivity hypothesis , 2006, Perception & psychophysics.

[12]  Shinsuke Shimojo,et al.  Development of multisensory spatial integration and perception in humans. , 2006, Developmental science.

[13]  David Alais,et al.  No direction-specific bimodal facilitation for audiovisual motion detection. , 2004, Brain research. Cognitive brain research.

[14]  Terry Caelli,et al.  Development of configural 3D object recognition , 2004, Behavioural Brain Research.

[15]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[16]  G F Meyer,et al.  The integration of auditory and visual motion signals at threshold , 2003, Perception & psychophysics.

[17]  Paul Bertelson,et al.  Temporal ventriloquism: crossmodal interaction on the time dimension. 2. Evidence from sensorimotor synchronization. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[18]  G. Aschersleben,et al.  Temporal ventriloquism: crossmodal interaction on the time dimension. 1. Evidence from auditory-visual temporal order judgment. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[19]  Tracey D. Berger,et al.  Flicker flutter: is an illusory event as good as the real thing? , 2003, Journal of vision.

[20]  Robert A Jacobs,et al.  Bayesian integration of visual and auditory signals for spatial localization. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  A. Kingstone,et al.  Auditory capture of vision: examining temporal ventriloquism. , 2003, Brain research. Cognitive brain research.

[22]  Frank Bremmer,et al.  Neural Correlates of Visual Localization and Perisaccadic Mislocalization , 2003, Neuron.

[23]  J. Gunn Dumbstruck: A Cultural History of Ventriloquism , 2003 .

[24]  A. Streri,et al.  Cross-modal recognition of shape from hand to eyes in human newborns , 2003, Somatosensory & motor research.

[25]  G. Essick,et al.  Tactile motion activates the human middle temporal/V5 (MT/V5) complex , 2002, The European journal of neuroscience.

[26]  C. Spence,et al.  Tactile “capture” of audition , 2002, Perception & psychophysics.

[27]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[29]  S. Shimojo,et al.  Sound alters visual evoked potentials in humans , 2001, Neuroreport.

[30]  M. Wallace,et al.  Sensory and Multisensory Responses in the Newborn Monkey Superior Colliculus , 2001, The Journal of Neuroscience.

[31]  S. Wuerger,et al.  Cross-modal integration of auditory and visual motion signals , 2001, Neuroreport.

[32]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[33]  L. Bahrick,et al.  Increasing specificity in perceptual development: infants' detection of nested levels of multimodal stimulation. , 2001, Journal of experimental child psychology.

[34]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[35]  S. Shimojo,et al.  Illusions: What you see is what you hear , 2000, Nature.

[36]  M. Morrone,et al.  Extraretinal Control of Saccadic Suppression , 2000, The Journal of Neuroscience.

[37]  D. Lewkowicz,et al.  The development of intersensory temporal perception: an epigenetic systems/limitations view. , 2000, Psychological bulletin.

[38]  I. Kovács,et al.  Late maturation of visual spatial integration in humans. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Jacobs,et al.  Optimal integration of texture and motion cues to depth , 1999, Vision Research.

[40]  D. Burr,et al.  Vision: Modular analysis – or not? , 1999, Current Biology.

[41]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Concetta Morrone,et al.  Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[43]  Pietro G. Morasso,et al.  Self-Organization, Computational Maps, and Motor Control , 1997 .

[44]  W. Simpson,et al.  Pedestal effect in visual motion discrimination. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[46]  D. Lewkowicz Infants’ responsiveness to the auditory and visual attributes of a sounding/moving stimulus , 1992, Perception & psychophysics.

[47]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[48]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[49]  D R Perrott,et al.  Minimum audible angle thresholds for sources varying in both elevation and azimuth. , 1990, The Journal of the Acoustical Society of America.

[50]  S Appelle,et al.  Eliminating the Haptic Oblique Effect: Influence of Scanning Incongruity and Prior Knowledge of the Standards , 1986, Perception.

[51]  S. Mateeff,et al.  Dynamic Visual Capture: Apparent Auditory Motion Induced by a Moving Visual Target , 1985, Perception.

[52]  D G Pelli,et al.  Uncertainty explains many aspects of visual contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[53]  R. Watt,et al.  The recognition and representation of edge blur: Evidence for spatial primitives in human vision , 1983, Vision Research.

[54]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[55]  D. Burr,et al.  Selective depression of motion sensitivity during saccades. , 1982, The Journal of physiology.

[56]  D. H. Warren,et al.  The role of visual-auditory “compellingness” in the ventriloquism effect: Implications for transitivity among the spatial senses , 1981, Perception & psychophysics.

[57]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[58]  B E Stein,et al.  Sequence of changes in properties of neurons of superior colliculus of the kitten during maturation. , 1973, Journal of neurophysiology.

[59]  S. Appelle Perception and discrimination as a function of stimulus orientation: the "oblique effect" in man and animals. , 1972, Psychological bulletin.

[60]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[61]  L. Matin,et al.  Visual Perception of Direction for Stimuli Flashed During Voluntary Saccadic Eye Movements , 1965, Science.

[62]  T SHIPLEY,et al.  Auditory Flutter-Driving of Visual Flicker , 1964, Science.

[63]  A. Mills On the minimum audible angle , 1958 .

[64]  H. Leibowitz,et al.  Apparent visual size as a function of distance for children and adults. , 1957, The American journal of psychology.

[65]  S. Basu,et al.  Determinants of Perception , 2009 .

[66]  M. Morrone,et al.  Spatio-temporal distortions of visual perception during saccades , 2007 .

[67]  J. Haxby,et al.  Perception of visual and tactile flow activates common cortical areas in the human brain , 2004 .

[68]  Franco Lepore,et al.  Comparison of sensitivity to first- and second-order local motion in 5-year-olds and adults. , 2003, Spatial vision.

[69]  Michael I. Jordan,et al.  Computational models of sensorimotor integration , 1997 .

[70]  M T Wallace,et al.  The visually responsive neuron and beyond: multisensory integration in cat and monkey. , 1993, Progress in brain research.

[71]  J. Atkinson,et al.  Human visual development over the first 6 months of life. A review and a hypothesis. , 1984, Human neurobiology.

[72]  G. Gottlieb Development of species identification in birds : an inquiry into the prenatal determinants of perception , 1971 .

[73]  G H MOWBRAY,et al.  On discriminating the rate of visual flicker and auditory flutter. , 1959, The American journal of psychology.