The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring‐spot virus resistance locus

Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high-quality 313.4-Mb genome sequence of a bottle gourd inbred line, USVL1VR-Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the assembled scaffolds are anchored to the 11 pseudomolecules. Our comparative genomic analysis identifies chromosome-level syntenic relationships between bottle gourd and other cucurbits, as well as lineage-specific gene family expansions in bottle gourd. We reconstructed the genome of the most recent common ancestor of Cucurbitaceae, which revealed that the ancestral Cucurbitaceae karyotypes consisted of 12 protochromosomes with 18 534 protogenes. The 12 protochromosomes are largely retained in the modern melon genome, while have undergone different degrees of shuffling events in other investigated cucurbit genomes. The 11 bottle gourd chromosomes derive from the ancestral Cucurbitaceae karyotypes followed by 19 chromosomal fissions and 20 fusions. The bottle gourd genome sequence has facilitated the mapping of a dominant monogenic locus, Prs, conferring Papaya ring-spot virus (PRSV) resistance in bottle gourd, to a 317.8-kb region on chromosome 1. We have developed a cleaved amplified polymorphic sequence (CAPS) marker tightly linked to the Prs locus and demonstrated its potential application in marker-assisted selection of PRSV resistance in bottle gourd. This study provides insights into the paleohistory of Cucurbitaceae genome evolution, and the high-quality genome sequence of bottle gourd provides a useful resource for plant comparative genomics studies and cucurbit improvement.

[1]  Susan R. Wessler,et al.  MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences , 2010, Nucleic acids research.

[2]  S. Adkins,et al.  Development and Field Evaluation of Multiple Virus-Resistant Bottle Gourd (Lagenaria siceraria). , 2013, Plant disease.

[3]  S. Masiero,et al.  The Emerging Importance of Type I MADS Box Transcription Factors for Plant Reproduction , 2011, Plant Cell.

[4]  H. Matsumura,et al.  Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions , 2016, DNA research : an international journal for rapid publication of reports on genes and genomes.

[5]  B. Morgenstern,et al.  AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome , 2006, Genome Biology.

[6]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[7]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[8]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[9]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[10]  A. Levi,et al.  Sources of Resistance to Zucchini Yellow Mosaic Virus in Lagenaria siceraria Germplasm , 2007 .

[11]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[12]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[13]  W. Turechek,et al.  Distribution of four viruses in single and mixed infections within infected watermelon plants in Florida. , 2010, Phytopathology.

[14]  Hao Wu,et al.  R/qtl: QTL Mapping in Experimental Crosses , 2003, Bioinform..

[15]  A. Levi,et al.  Genetic diversity among Lagenaria siceraria accessions containing resistance to root-knot nematodes, whiteflies, ZYMV or powdery mildew , 2009, Plant Genetic Resources.

[16]  M. Pathak,et al.  Microsatellite-based DNA fingerprinting and genetic diversity of bottle gourd genotypes , 2013, Plant Genetic Resources.

[17]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[18]  Robert J. Elshire,et al.  TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline , 2014, PloS one.

[19]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[20]  A. Levi,et al.  Grafting for Disease Resistance , 2008 .

[21]  Nirmal Ranganathan,et al.  Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates the Classification of Transposable Elements in Eukaryotic Genomes , 2009, Genome biology and evolution.

[22]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[23]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[24]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[25]  E. Kabelka,et al.  Linkage Analysis of Potyvirus Resistance Alleles in Cucumber , 1997 .

[26]  Robert Gentleman,et al.  ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data , 2009, Bioinform..

[27]  D. Gonsalves Control of papaya ringspot virus in papaya: a case study. , 1998, Annual review of phytopathology.

[28]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[29]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[30]  G. Martin,et al.  iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. , 2016, Molecular plant.

[31]  Kui Lin,et al.  RNA-Seq improves annotation of protein-coding genes in the cucumber genome , 2011, BMC Genomics.

[32]  X. Gu,et al.  Genetic analysis and gene mapping of papaya ring spot virus resistance in cucumber , 2015, Molecular Breeding.

[33]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[34]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[35]  S. Renner,et al.  Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events , 2009, Proceedings of the Royal Society B: Biological Sciences.

[36]  J. Staub,et al.  Discovery and genetic assessment of wild bottle Gourd [Lagenaria siceraria (Mol.) Standley; Cucurbitaceae] from Zimbabwe , 2004, Economic Botany.

[37]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[38]  Bruce D. Smith,et al.  Transoceanic drift and the domestication of African bottle gourds in the Americas , 2014, Proceedings of the National Academy of Sciences.

[39]  J. Suzuki,et al.  Papaya ringspot virus , 2022, CABI Compendium.

[40]  J. Fuchs,et al.  Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation , 2008, Plant Systematics and Evolution.

[41]  Sihai Yang,et al.  Extreme expansion of NBS-encoding genes in Rosaceae , 2015, BMC Genetics.

[42]  James C. Schnable,et al.  ALLMAPS: robust scaffold ordering based on multiple maps , 2015, Genome Biology.

[43]  Yun-Chan Huh,et al.  Cucurbit Grafting , 2008 .

[44]  Hiroaki Iwata,et al.  Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features , 2012, Nucleic acids research.

[45]  Gynheung An,et al.  Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Delorenzi,et al.  An HMM model for coiled-coil domains and a comparison with PSSM-based predictions , 2002, Bioinform..

[47]  Anthony M. Bolger,et al.  Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. , 2013, Molecular plant.

[48]  B. Meyers,et al.  Genome-wide identification of NBS resistance genes in Populus trichocarpa , 2008, Plant Molecular Biology.

[49]  F. Ausubel,et al.  A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. , 1993, The Plant journal : for cell and molecular biology.

[50]  W. J. Lucas,et al.  Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes , 2017, bioRxiv.

[51]  Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae , 2013, BMC Genomics.

[52]  Amy E. Keating,et al.  Paircoil2: improved prediction of coiled coils from sequence , 2006, Bioinform..

[53]  陈奕欣 Ongoing and future developments at the Universal Protein Resource , 2011 .

[54]  J. Salse Ancestors of modern plant crops. , 2016, Current opinion in plant biology.

[55]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[56]  S. Renner,et al.  Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia , 2010, Proceedings of the National Academy of Sciences.

[57]  G. Jeena,et al.  Regulation of Apetala2/Ethylene Response Factors in Plants , 2017, Front. Plant Sci..

[58]  A. Levi,et al.  Potential Sources of Resistance to Cucurbit Powdery Mildew in U.S. Plant Introductions of Bottle Gourd , 2008 .

[59]  Juan Miguel García-Gómez,et al.  Sequence analysis Blast 2 GO : a universal tool for annotation , visualization and analysis in functional genomics research , 2005 .

[60]  Shizhong Xu,et al.  Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. , 2014, The Plant journal : for cell and molecular biology.

[61]  Mira V. Han,et al.  Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. , 2013, Molecular biology and evolution.

[62]  W. J. Lucas,et al.  The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions , 2012, Nature Genetics.

[63]  A. Schlumbaum,et al.  A short history of Lagenaria siceraria (bottle gourd) in the Roman provinces: morphotypes and archaeogenetics , 2012, Vegetation History and Archaeobotany.

[64]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[65]  R. Guigó,et al.  The genome of melon (Cucumis melo L.) , 2012, Proceedings of the National Academy of Sciences.

[66]  S. Zhong,et al.  High-throughput illumina strand-specific RNA sequencing library preparation. , 2011, Cold Spring Harbor protocols.

[67]  S. Cannon,et al.  Genome-level evolution of resistance genes in Arabidopsis thaliana. , 2003, Genetics.

[68]  A. Odindo,et al.  Phenotypic and genotypic characterization of bottle gourd [Lagenaria siceraria (Molina) Standl.] and implications for breeding: A Review , 2017 .

[69]  A. Oliphant,et al.  A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). , 2002, Science.

[70]  Sofia M. C. Robb,et al.  MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. , 2007, Genome research.

[71]  Asan,et al.  The genome of the cucumber, Cucumis sativus L. , 2009, Nature Genetics.

[72]  R. Grumet,et al.  Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance , 1995, Theoretical and Applied Genetics.