Approximation Algorithms for Some Topological Invariants of Graphs
暂无分享,去创建一个
[1] W. Sierpinski,et al. Sur le probléme des courbes gauches en Topologie , 2022 .
[2] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[3] F. Harary,et al. Every planar graph with nine points has a nonplanar complement , 1962 .
[4] Samuel Eilon,et al. Plant Layout and Design , 1962 .
[5] W. T. Tutte. The Non-Biplanar Character of the Complete 9-Graph , 1963, Canadian Mathematical Bulletin.
[6] W. T. Tutte,et al. The thickness of a graph , 1963 .
[7] C. Nash-Williams. Decomposition of Finite Graphs Into Forests , 1964 .
[8] J. Moon,et al. On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] L. Beineke,et al. On the thickness of the complete graph , 1964 .
[10] G. Ringel,et al. Die toroidale Dicke des vollständigen Graphen , 1965 .
[11] M. Kleinert. Die dicke des n-dimensionalen Würfel-graphen , 1967 .
[12] F. Harary,et al. Planar Permutation Graphs , 1967 .
[13] Frank Harary,et al. Graph Theory , 2016 .
[14] Robert William Shirey,et al. Implementation and analysis of efficient graph planarity testing algorithms , 1969 .
[15] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[16] R. E. Pippert,et al. A census of ball and disk dissections , 1972 .
[17] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[18] Robert E. Tarjan,et al. Computing an st -Numbering , 1976, Theor. Comput. Sci..
[19] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[20] N. Bose,et al. Thickness of graphs with degree constrained vertices , 1977 .
[21] E. Reingold,et al. Combinatorial Algorithms: Theory and Practice , 1977 .
[22] Mihalis Yannakakis,et al. Node-and edge-deletion NP-complete problems , 1978, STOC.
[23] D. Robinson,et al. Graph theoretic heuristics for the plant layout problem , 1978 .
[24] Sandra Mitchell Hedetniemi,et al. Linear Algorithms for Isomorphism of Maximal Outerplanar Graphs , 1979, JACM.
[25] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[26] Shimon Even,et al. Graph Algorithms , 1979 .
[27] Paul C. Kainen,et al. The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.
[28] S. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs , 1979 .
[29] Dieter Jungnickel,et al. Graphs, Networks, and Algorithms , 1980 .
[30] Anthony Mansfield,et al. Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.
[31] Akira Nakamura,et al. On the NP-hardness of edge-deletion and -contraction problems , 1983, Discret. Appl. Math..
[32] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[33] Martin Dyer,et al. Analysis of heuristics for finding a maximum weight planar subgraph , 1985 .
[34] Harold N. Gabow,et al. Efficient Algorithms for Graphic Intersection and Parity (Extended Abstract) , 1985 .
[35] Peter B. Gibbons,et al. Facilities Layout Adjacency Determination: An Experimental Comparison of Three Graph Theoretic Heuristics , 1985, Oper. Res..
[36] Manfred Wiegers,et al. Recognizing Outerplanar Graphs in Linear Time , 1986, WG.
[37] Kouhei Asano. On the genus and thickness of graphs , 1987, J. Comb. Theory, Ser. B.
[38] Carlo Batini,et al. Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..
[39] Cecilia R. Aragon,et al. Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..
[40] Roberto Tamassia,et al. Incremental planarity testing , 1989, 30th Annual Symposium on Foundations of Computer Science.
[41] Y Takefuji,et al. A Near-Optimum Parallel Planarization Algorithm , 1989, Science.
[42] Majid Sarrafzadeh,et al. A new approach to topological via minimization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[43] M.N.S. Swamy,et al. O(n2) algorithms for graph planarization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[44] Mihalis Yannakakis,et al. Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..
[45] R. Guy,et al. The Outerthickness & Outercoarseness of Graphs I. The Complete Graph & The n-Cube , 1990 .
[46] Cecilia R. Aragon,et al. Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..
[47] John H. Halton,et al. On the thickness of graphs of given degree , 1991, Inf. Sci..
[48] Lenwood S. Heath. Edge coloring planar graphs with two outerplanar subgraphs , 1991, SODA '91.
[49] Edward R. Scheinerman,et al. On the thickness and arboricity of a graph , 1991, J. Comb. Theory, Ser. B.
[50] J. Leung. A New Graph-Theoretic Heuristic for Facility Layout , 1992 .
[51] Colin Cooper. On the Trickness of Sparse Random Graphs , 1992, Comb. Probab. Comput..
[52] T. Bilski. Embedding graphs in books: a survey , 1992 .
[53] Mikhail J. Atallah,et al. Fast Detection and Display of Symmetry in Outerplanar Graphs , 1992, Discret. Appl. Math..
[54] G. Kant. An O(n2) maximal planarization algorithm based on PQ-trees , 1992 .
[55] Petra Mutzel,et al. An implementation of the Hopcroft and Tarjan planarity test and embedding algorithm , 1993 .
[56] C. Reeves. Modern heuristic techniques for combinatorial problems , 1993 .
[57] Robert E. Tarjan,et al. An O(m log n)-Time Algorithm for the Maximal Planar Subgraph Problem , 1992, SIAM J. Comput..
[58] Olivier Goldschmidt,et al. An efficient graph planarization two-phase heuristic , 1994, Networks.
[59] Robert Cimikowski,et al. Branch-and-bound techniques for the maximum planar subgraph problem ∗ , 1994 .
[60] La Poutre,et al. Alpha-algorithms for incremental planarity testing , 1994 .
[61] Ioannis G. Tollis,et al. Graph Drawing , 1994, Lecture Notes in Computer Science.
[62] Ibrahim H. Osman,et al. Local search algorithms for the maximal planar layout problem , 1995 .
[63] Robert J. Cimikowski. An analysis of some heuristics for the maximum planar subgraph problem , 1995, SODA '95.
[64] Mauricio G. C. Resende,et al. Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..
[65] Robert J. Cimikowski,et al. On Heuristics for Determining the Thickness of a Graph , 1995, Inf. Sci..
[66] Yves Crama,et al. Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.
[67] Hristo Djidjev. A Linear Algorithm for the Maximal Planar Subgraph Problem , 1995, WADS.
[68] Cristina G. Fernandes,et al. A better approximation algorithm for finding planar subgraphs , 1996, SODA '96.
[69] Goos Kant,et al. Augmenting Outerplanar Graphs , 1996, J. Algorithms.
[70] Anusch Taraz,et al. On the Maximum Planar Subgraph Problem , 1996 .
[71] Chi-Kwong Li,et al. A research problem , 1996 .
[72] Robert J. Cimikowski,et al. The sizes of maximal planar, outerplanar, and bipartite planar subgraphs , 1996, Discret. Math..
[73] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[74] L. Beineke,et al. Biplanar Graphs:: A Survey , 1997 .
[75] Dorothea Heiss-Czedik,et al. An Introduction to Genetic Algorithms. , 1997, Artificial Life.
[76] M. Resende,et al. A GRASP for graph planarization , 1997 .
[77] Robert Cimikowski. An analysis of heuristics for graph planarization , 1997 .
[78] Tomasz Bilski. Optimum embedding of complete graphs in books , 1998, Discret. Math..
[79] Petra Mutzel,et al. The Thickness of Graphs: A Survey , 1998, Graphs Comb..
[80] Michael Jünger,et al. The thickness of a minor-excluded class of graphs , 1998, Discret. Math..
[81] David S. Johnson,et al. A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.
[82] Norbert Zeh,et al. External Memory Algorithms for Outerplanar Graphs , 1999, ISAAC.
[83] Bernard M. E. Moret,et al. DIMACS Series in Discrete Mathematics and Theoretical Computer Science Towards a Discipline of Experimental Algorithmics , 2022 .
[84] Nicholas C. Wormald,et al. Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.
[85] Zvi Galil,et al. Fully dynamic planarity testing with applications , 1999, JACM.
[86] Wei-Kuan Shih,et al. A New Planarity Test , 1999, Theor. Comput. Sci..
[87] John M. Boyer,et al. Stop minding your p's and q's: a simplified O(n) planar embedding algorithm , 1999, SODA '99.
[88] Geometric Thickness of Complete Graphs , 2000, J. Graph Algorithms Appl..
[89] Annegret Liebers,et al. Journal of Graph Algorithms and Applications Planarizing Graphs — a Survey and Annotated Bibliography , 2022 .
[90] Henry D. Shapiro,et al. Algorithms and Experiments: The New (and Old) Methodology , 2001, J. Univers. Comput. Sci..
[91] Erkki Mäkinen,et al. A genetic algorithm for determining the thickness of a graph , 2001, Inf. Sci..
[92] Cristina G. Fernandes,et al. A New Approximation Algorithm for Finding Heavy Planar Subgraphs , 2003, Algorithmica.
[93] David R. Wood,et al. Degree constrained book embeddings , 2002, J. Algorithms.
[94] Therese C. Biedl,et al. Drawing Outer-Planar Graphs in O(n log n) Area , 2002, GD.
[95] David Eppstein,et al. Separating Thickness from Geometric Thickness , 2002, GD.
[96] Koichi Yamazaki,et al. Worst case analysis of a greedy algorithm for graph thickness , 2003, Inf. Process. Lett..
[97] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[98] John M. Boyer,et al. Stop Minding Your P's and Q's: Implementing a Fast and Simple DFS-Based Planarity Testing and Embedding Algorithm , 2003, GD.
[99] Timo Poranen,et al. Apptopinv User's Guide , 2003 .
[100] Wen-Lian Hsu. An Efficient Implementation of the PC-Tree Algorithm of Shih & Hsu ’ s Planarity Test , 2003 .
[101] Stefan Felsner,et al. Straight-Line Drawings on Restricted Integer Grids in Two and Three Dimensions , 2001, J. Graph Algorithms Appl..
[102] David R. Wood,et al. Geometric thickness in a grid , 2003, Discret. Math..
[103] Hiroshi Nagamochi,et al. A simple recognition of maximal planar graphs , 2004, Inf. Process. Lett..
[104] László A. Székely,et al. A note on Halton's conjecture , 2004, Inf. Sci..
[105] Timo Poranen,et al. A simulated annealing algorithm for the maximum planar subgraph problem , 2004, Int. J. Comput. Math..
[106] Alok Aggarwal,et al. Multilayer grid embeddings for VLSI , 2005, Algorithmica.
[107] Kurt Mehlhorn,et al. On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm , 2005, Algorithmica.
[108] Michael Jünger,et al. Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.
[109] Timo Poranen,et al. A simulated annealing algorithm for determining the thickness of a graph , 2005, Inf. Sci..