Approximation Algorithms for Some Topological Invariants of Graphs

Topological graph theory studies the embeddings of graphs on various surfaces and the properties of these embeddings. Topological properties of graphs have many applications in the fields of graph drawing, user interface design, circuit design, and resource location optimization. This thesis studies approximation methods for the following NP -complete optimization problems: maximum planar subgraph, maximum outerplanar subgraph, and thickness of a graph. We also study the outerthickness problem which complexity status is not known. We compare the solution quality and computation times of a simulated annealing algorithm and several algorithms based on triangular cactus heuristic, including other heuristics taken from the literature, to approximately solve these problems. Triangular cactus heuristic was the first non-trivial approximation algorithm for the maximum planar and outerplanar subgraph problems. We give a modified version of the triangular cactus heuristic that has at least equal performance ratio and asymptotic running time as the linear time version of the original algorithm. A large number of experiments show that the new algorithm achieves better approximations than the earlier methods. We give two new theoretical results for the thickness and outerthickness of a graph. We prove a new upper bound for the thickness of complete tripartite graphs, and lower and upper bounds in the terms of the minimum and maximum degree of a graph for outerthickness. Also, the simulated annealing algorithm given in this work solves partially an open problem related to the thickness of the complete bipartite graphs. Our experiments show that the general formula also holds for some previously unknown cases.

[1]  W. Sierpinski,et al.  Sur le probléme des courbes gauches en Topologie , 2022 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  F. Harary,et al.  Every planar graph with nine points has a nonplanar complement , 1962 .

[4]  Samuel Eilon,et al.  Plant Layout and Design , 1962 .

[5]  W. T. Tutte The Non-Biplanar Character of the Complete 9-Graph , 1963, Canadian Mathematical Bulletin.

[6]  W. T. Tutte,et al.  The thickness of a graph , 1963 .

[7]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .

[8]  J. Moon,et al.  On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  L. Beineke,et al.  On the thickness of the complete graph , 1964 .

[10]  G. Ringel,et al.  Die toroidale Dicke des vollständigen Graphen , 1965 .

[11]  M. Kleinert Die dicke des n-dimensionalen Würfel-graphen , 1967 .

[12]  F. Harary,et al.  Planar Permutation Graphs , 1967 .

[13]  Frank Harary,et al.  Graph Theory , 2016 .

[14]  Robert William Shirey,et al.  Implementation and analysis of efficient graph planarity testing algorithms , 1969 .

[15]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[16]  R. E. Pippert,et al.  A census of ball and disk dissections , 1972 .

[17]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[18]  Robert E. Tarjan,et al.  Computing an st -Numbering , 1976, Theor. Comput. Sci..

[19]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[20]  N. Bose,et al.  Thickness of graphs with degree constrained vertices , 1977 .

[21]  E. Reingold,et al.  Combinatorial Algorithms: Theory and Practice , 1977 .

[22]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[23]  D. Robinson,et al.  Graph theoretic heuristics for the plant layout problem , 1978 .

[24]  Sandra Mitchell Hedetniemi,et al.  Linear Algorithms for Isomorphism of Maximal Outerplanar Graphs , 1979, JACM.

[25]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[26]  Shimon Even,et al.  Graph Algorithms , 1979 .

[27]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[28]  S. Mitchell Linear algorithms to recognize outerplanar and maximal outerplanar graphs , 1979 .

[29]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[30]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Akira Nakamura,et al.  On the NP-hardness of edge-deletion and -contraction problems , 1983, Discret. Appl. Math..

[32]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[33]  Martin Dyer,et al.  Analysis of heuristics for finding a maximum weight planar subgraph , 1985 .

[34]  Harold N. Gabow,et al.  Efficient Algorithms for Graphic Intersection and Parity (Extended Abstract) , 1985 .

[35]  Peter B. Gibbons,et al.  Facilities Layout Adjacency Determination: An Experimental Comparison of Three Graph Theoretic Heuristics , 1985, Oper. Res..

[36]  Manfred Wiegers,et al.  Recognizing Outerplanar Graphs in Linear Time , 1986, WG.

[37]  Kouhei Asano On the genus and thickness of graphs , 1987, J. Comb. Theory, Ser. B.

[38]  Carlo Batini,et al.  Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..

[39]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[40]  Roberto Tamassia,et al.  Incremental planarity testing , 1989, 30th Annual Symposium on Foundations of Computer Science.

[41]  Y Takefuji,et al.  A Near-Optimum Parallel Planarization Algorithm , 1989, Science.

[42]  Majid Sarrafzadeh,et al.  A new approach to topological via minimization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[43]  M.N.S. Swamy,et al.  O(n2) algorithms for graph planarization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[44]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[45]  R. Guy,et al.  The Outerthickness & Outercoarseness of Graphs I. The Complete Graph & The n-Cube , 1990 .

[46]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[47]  John H. Halton,et al.  On the thickness of graphs of given degree , 1991, Inf. Sci..

[48]  Lenwood S. Heath Edge coloring planar graphs with two outerplanar subgraphs , 1991, SODA '91.

[49]  Edward R. Scheinerman,et al.  On the thickness and arboricity of a graph , 1991, J. Comb. Theory, Ser. B.

[50]  J. Leung A New Graph-Theoretic Heuristic for Facility Layout , 1992 .

[51]  Colin Cooper On the Trickness of Sparse Random Graphs , 1992, Comb. Probab. Comput..

[52]  T. Bilski Embedding graphs in books: a survey , 1992 .

[53]  Mikhail J. Atallah,et al.  Fast Detection and Display of Symmetry in Outerplanar Graphs , 1992, Discret. Appl. Math..

[54]  G. Kant An O(n2) maximal planarization algorithm based on PQ-trees , 1992 .

[55]  Petra Mutzel,et al.  An implementation of the Hopcroft and Tarjan planarity test and embedding algorithm , 1993 .

[56]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[57]  Robert E. Tarjan,et al.  An O(m log n)-Time Algorithm for the Maximal Planar Subgraph Problem , 1992, SIAM J. Comput..

[58]  Olivier Goldschmidt,et al.  An efficient graph planarization two-phase heuristic , 1994, Networks.

[59]  Robert Cimikowski,et al.  Branch-and-bound techniques for the maximum planar subgraph problem ∗ , 1994 .

[60]  La Poutre,et al.  Alpha-algorithms for incremental planarity testing , 1994 .

[61]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[62]  Ibrahim H. Osman,et al.  Local search algorithms for the maximal planar layout problem , 1995 .

[63]  Robert J. Cimikowski An analysis of some heuristics for the maximum planar subgraph problem , 1995, SODA '95.

[64]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[65]  Robert J. Cimikowski,et al.  On Heuristics for Determining the Thickness of a Graph , 1995, Inf. Sci..

[66]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[67]  Hristo Djidjev A Linear Algorithm for the Maximal Planar Subgraph Problem , 1995, WADS.

[68]  Cristina G. Fernandes,et al.  A better approximation algorithm for finding planar subgraphs , 1996, SODA '96.

[69]  Goos Kant,et al.  Augmenting Outerplanar Graphs , 1996, J. Algorithms.

[70]  Anusch Taraz,et al.  On the Maximum Planar Subgraph Problem , 1996 .

[71]  Chi-Kwong Li,et al.  A research problem , 1996 .

[72]  Robert J. Cimikowski,et al.  The sizes of maximal planar, outerplanar, and bipartite planar subgraphs , 1996, Discret. Math..

[73]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[74]  L. Beineke,et al.  Biplanar Graphs:: A Survey , 1997 .

[75]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[76]  M. Resende,et al.  A GRASP for graph planarization , 1997 .

[77]  Robert Cimikowski An analysis of heuristics for graph planarization , 1997 .

[78]  Tomasz Bilski Optimum embedding of complete graphs in books , 1998, Discret. Math..

[79]  Petra Mutzel,et al.  The Thickness of Graphs: A Survey , 1998, Graphs Comb..

[80]  Michael Jünger,et al.  The thickness of a minor-excluded class of graphs , 1998, Discret. Math..

[81]  David S. Johnson,et al.  A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.

[82]  Norbert Zeh,et al.  External Memory Algorithms for Outerplanar Graphs , 1999, ISAAC.

[83]  Bernard M. E. Moret,et al.  DIMACS Series in Discrete Mathematics and Theoretical Computer Science Towards a Discipline of Experimental Algorithmics , 2022 .

[84]  Nicholas C. Wormald,et al.  Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.

[85]  Zvi Galil,et al.  Fully dynamic planarity testing with applications , 1999, JACM.

[86]  Wei-Kuan Shih,et al.  A New Planarity Test , 1999, Theor. Comput. Sci..

[87]  John M. Boyer,et al.  Stop minding your p's and q's: a simplified O(n) planar embedding algorithm , 1999, SODA '99.

[88]  Geometric Thickness of Complete Graphs , 2000, J. Graph Algorithms Appl..

[89]  Annegret Liebers,et al.  Journal of Graph Algorithms and Applications Planarizing Graphs — a Survey and Annotated Bibliography , 2022 .

[90]  Henry D. Shapiro,et al.  Algorithms and Experiments: The New (and Old) Methodology , 2001, J. Univers. Comput. Sci..

[91]  Erkki Mäkinen,et al.  A genetic algorithm for determining the thickness of a graph , 2001, Inf. Sci..

[92]  Cristina G. Fernandes,et al.  A New Approximation Algorithm for Finding Heavy Planar Subgraphs , 2003, Algorithmica.

[93]  David R. Wood,et al.  Degree constrained book embeddings , 2002, J. Algorithms.

[94]  Therese C. Biedl,et al.  Drawing Outer-Planar Graphs in O(n log n) Area , 2002, GD.

[95]  David Eppstein,et al.  Separating Thickness from Geometric Thickness , 2002, GD.

[96]  Koichi Yamazaki,et al.  Worst case analysis of a greedy algorithm for graph thickness , 2003, Inf. Process. Lett..

[97]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[98]  John M. Boyer,et al.  Stop Minding Your P's and Q's: Implementing a Fast and Simple DFS-Based Planarity Testing and Embedding Algorithm , 2003, GD.

[99]  Timo Poranen,et al.  Apptopinv User's Guide , 2003 .

[100]  Wen-Lian Hsu An Efficient Implementation of the PC-Tree Algorithm of Shih & Hsu ’ s Planarity Test , 2003 .

[101]  Stefan Felsner,et al.  Straight-Line Drawings on Restricted Integer Grids in Two and Three Dimensions , 2001, J. Graph Algorithms Appl..

[102]  David R. Wood,et al.  Geometric thickness in a grid , 2003, Discret. Math..

[103]  Hiroshi Nagamochi,et al.  A simple recognition of maximal planar graphs , 2004, Inf. Process. Lett..

[104]  László A. Székely,et al.  A note on Halton's conjecture , 2004, Inf. Sci..

[105]  Timo Poranen,et al.  A simulated annealing algorithm for the maximum planar subgraph problem , 2004, Int. J. Comput. Math..

[106]  Alok Aggarwal,et al.  Multilayer grid embeddings for VLSI , 2005, Algorithmica.

[107]  Kurt Mehlhorn,et al.  On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm , 2005, Algorithmica.

[108]  Michael Jünger,et al.  Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.

[109]  Timo Poranen,et al.  A simulated annealing algorithm for determining the thickness of a graph , 2005, Inf. Sci..