TOPICAL REVIEW: Will silicon be the photonic material of the third millenium? *

Silicon microphotonics, a technology which merges photonics and silicon microelectronic components, is rapidly evolving. Many different fields of application are emerging: transceiver modules for optical communication systems, optical bus systems for ULSI circuits, I/O stages for SOC, displays, .... In this review I will give a brief motivation for silicon microphotonics and try to give the state-of-the-art of this technology. The ingredient still lacking is the silicon laser: a review of the various approaches will be presented. Finally, I will try to draw some conclusions where silicon is predicted to be the material to achieve a full integration of electronic and optical devices.

[1]  Lorenzo Pavesi,et al.  Light Emitting Silicon for Microphotonics , 2003 .

[2]  Lorenzo Pavesi,et al.  Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals , 2003 .

[3]  A. Irace,et al.  Three terminals optoelectronics devices integrated into a silicon on silicon waveguide , 2003 .

[4]  Lorenzo Pavesi,et al.  Towards the First Silicon Laser , 2003 .

[5]  J. Faist,et al.  Electroluminescence from strain-compensated Si0.2Ge0.8/Si quantum-cascade structures based on a bound-to-continuum transition , 2002 .

[6]  Namkyoo Park,et al.  Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier , 2002 .

[7]  H. Riemann,et al.  Terahertz optically pumped Si:Sb laser , 2002 .

[8]  Maria Miritello,et al.  Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices , 2002 .

[9]  Joe C. Campbell,et al.  High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology , 2002 .

[10]  M. Green,et al.  High-efficiency optical emission, detection, and coupling using silicon diodes , 2002 .

[11]  Douglas J. Paul,et al.  Intersubband electroluminescence from Si/SiGe cascade emitters at terahertz frequencies , 2002 .

[12]  J. Valenta,et al.  Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals , 2002 .

[13]  A. Upham,et al.  A high-speed, high-sensitivity silicon lateral trench photodetector , 2002, IEEE Electron Device Letters.

[14]  I. Sagnes,et al.  Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands , 2002 .

[15]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[16]  H. Riemann,et al.  Stimulated terahertz emission from group-V donors in silicon under intracenter photoexcitation , 2002 .

[17]  Ching-Fuh Lin,et al.  Nanoparticle-modified metal-oxide-silicon structure enhancing silicon band-edge electroluminescence to near-lasing action. , 2002, Optics letters.

[18]  Condensate luminescence under ultraviolet excitation: application to the study of ultrathin SOI layers , 2002 .

[19]  G. Abstreiter,et al.  Midinfrared intersubband electroluminescence of Si/SiGe quantum cascade structures , 2002 .

[20]  I. Pelant,et al.  Stimulated emission in blue-emitting Si+-implanted SiO2 films? , 2002 .

[21]  G. Dehlinger,et al.  Si/SiGe quantum cascade structures emitting in the 10 μm range , 2002 .

[22]  S. Winnerl,et al.  MBE grown Si/SiGe undulating layer superlattices for infrared light detection , 2002 .

[23]  Gianlorenzo Masini,et al.  Si based optoelectronics for communications , 2002 .

[24]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[25]  S. Chaieb,et al.  Observation of laser oscillation in aggregates of ultrasmall silicon nanoparticles , 2002 .

[26]  L Risch The end of the CMOS roadmap—new landscape beyond , 2002 .

[27]  Anthony J. Kenyon,et al.  Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms , 2002 .

[28]  F. Priolo,et al.  Electroluminescence of silicon nanocrystals in MOS structures , 2002 .

[29]  Pieter G. Kik,et al.  Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2 , 2002 .

[30]  Se-Young Seo,et al.  Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide , 2001 .

[31]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[32]  J. Heitmann,et al.  Confinement effects in crystallization and Er doping of Si nanostructures , 2001 .

[33]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[34]  M. Räsänen,et al.  Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses , 2001 .

[35]  K. Chao,et al.  Mechanism of terahertz lasing in SiGe/Si quantum wells , 2001 .

[36]  Francesco Priolo,et al.  Silicon nanocrystals and Er3+ ions in an optical microcavity , 2001 .

[37]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[38]  Domenico Pacifici,et al.  Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals , 2001 .

[39]  G. Dehlinger,et al.  Intersubband electroluminescence from silicon-based quantum cascade structures. , 2000, Science.

[40]  G. Masini,et al.  Germanium on silicon pin photodiodes for the near infrared , 2000 .

[41]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[42]  Nobuyoshi Koshida,et al.  Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode , 2000 .

[43]  L. Kimerling,et al.  Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model , 2000 .

[44]  Ray T. Chen,et al.  Fully embedded board-level guided-wave optoelectronic interconnects , 2000, Proceedings of the IEEE.

[45]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[46]  Pavlov,et al.  Stimulated emission from donor transitions in silicon , 2000, Physical review letters.

[47]  Thomas N. Theis,et al.  The future of interconnection technology , 2000, IBM J. Res. Dev..

[48]  Domenico Pacifici,et al.  Er3+ ions–Si nanocrystals interactions and their effects on the luminescence properties , 2000 .

[49]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[50]  Enrico Gratton,et al.  Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles , 2000 .

[51]  Kazumi Wada,et al.  Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates , 2000 .

[52]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[53]  T. Miya,et al.  Silica-based planar lightwave circuits: passive and thermally active devices , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  K. Kato,et al.  PLC hybrid integration technology and its application to photonic components , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  T. Kuusela,et al.  Laser type of spectral narrowing in electroluminescent Si/SiO2superlattices prepared by low-pressure chemical vapour deposition , 1999 .

[56]  H. B. Harrison,et al.  Self-alignment of optical fibers with optical quality end-polished silicon rib waveguides using wet chemical micromachining techniques , 1999 .

[57]  Kazumi Wada,et al.  High responsitivity near infrared Ge photodetectors integrated on Si , 1999 .

[58]  Graham T. Reed,et al.  0.15 dB/cm loss in Unibond SOI waveguides , 1999 .

[59]  Xinwei Zhao,et al.  FABRICATION AND STIMULATED EMISSION OF ER-DOPED NANOCRYSTALLINE SI WAVEGUIDES FORMED ON SI SUBSTRATES BY LASER ABLATION , 1999 .

[60]  S. U. Campisano,et al.  Silicon-Based Microphotonics : from Basics to Applications, Varenna on Lake Como, Villa Monastero, 21-31 July 1998 , 1999 .

[61]  Ivo Rendina,et al.  Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding , 1998 .

[62]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[63]  A. Lacaita,et al.  Direct evidence of impact excitation and spatial profiling of excited Er in light emitting Si diodes , 1998 .

[64]  A. Polman,et al.  Erbium implanted thin film photonic materials , 1997 .

[65]  M. Nayfeh,et al.  Ideal anodization of silicon , 1997 .

[66]  H. Bleichner,et al.  The ambipolar Auger coefficient: Measured temperature dependence in electron irradiated and highly injected n-type silicon , 1997 .

[67]  R. Soref Prospects for novel Si-based optoelectronic devices: unipolar and p–i–p–i lasers , 1997 .

[68]  F. Priolo,et al.  High efficiency and fast modulation of Er‐doped light emitting Si diodes , 1996 .

[69]  U. Hilleringmann,et al.  Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip , 1995 .

[70]  Alberto Carnera,et al.  Room‐temperature electroluminescence from Er‐doped crystalline Si , 1994 .

[71]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[72]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[73]  W. Nix,et al.  A numerical model for prediction of creep fracture , 1987 .

[74]  W. P. Dumke,et al.  Interband Transitions and Maser Action , 1962 .

[75]  F. A. Kröger,et al.  Trivalent cations in fluorescent zinc sulphide , 1950 .