STUDYING THE WARM-HOT INTERGALACTIC MEDIUM IN EMISSION

We assess the possibility of detecting the warm-hot intergalactic medium in emission and characterizing its physical conditions and spatial distribution through spatially resolved X-ray spectroscopy, in the framework of the recently proposed DIOS, EDGE, Xenia, and ORIGIN missions, all of which are equipped with microcalorimeter-based detectors. For this purpose, we analyze a large set of mock emission spectra, extracted from a cosmological hydrodynamical simulation. These mock X-ray spectra are searched for emission features showing both the O VII Kα triplet and O VIII Lyα line, which constitute a typical signature of the warm-hot gas. Our analysis shows that 1 Ms long exposures and energy resolution of 2.5 eV will allow us to detect about 400 such features per deg2 with a significance ≥5σ and reveals that these emission systems are typically associated with density ~100 above the mean. The temperature can be estimated from the line ratio with a precision of ~20%. The combined effect of contamination from other lines, variation in the level of the continuum, and degradation of the energy resolution reduces these estimates. Yet, with an energy resolution of 7 eV and all these effects taken into account, one still expects about 160 detections per deg2. These line systems are sufficient for tracing the spatial distribution of the line-emitting gas, which constitute an additional information, independent from line statistics, to constrain the poorly known cosmic chemical enrichment history and the stellar feedback processes.

[1]  Maxim Markevitch,et al.  Resolving the Unresolved Cosmic X-Ray Background in the Chandra Deep Fields , 2007, astro-ph/0702556.

[2]  X-Ray Absorption by the Low-Redshift Intergalactic Medium: A Numerical Study of the Λ Cold Dark Matter Model , 2002, astro-ph/0203319.

[3]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[4]  J. Schaye,et al.  Metal-line emission from the warm-hot intergalactic medium: I. Soft X-rays , 2009, 0910.5723.

[5]  E. Quémerais,et al.  Charge-transfer induced EUV and soft X-ray emissions in the heliosphere , 2006 .

[6]  G. Bryan,et al.  A Chandra High-Energy Transition Grating Spectrometer Observation of the Quasar H1821+643 and Its Surrounding Cluster , 2002 .

[7]  G. Tagliaferri,et al.  Accepted for Publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 X-RAY ABSORPTION BY WHIM IN THE SCULPTOR WALL , 2022 .

[8]  Warm-hot intergalactic medium associated with the coma cluster , 2006, astro-ph/0610424.

[9]  G. Bryan,et al.  A Chandra HETG Observation of the Quasar H 1821+643 and Its Surrounding Cluster , 2001, astro-ph/0109389.

[10]  T. L. Herter,et al.  JANUS: exploring the high redshift universe , 2010, Astronomical Telescopes + Instrumentation.

[11]  F. Paerels,et al.  The O VII X-Ray Forest toward Markarian 421: Consistency between XMM-Newton and Chandra , 2006, astro-ph/0604519.

[12]  G. Stinson,et al.  The enrichment of the intergalactic medium with adiabatic feedback – I. Metal cooling and metal diffusion , 2009, 0910.5956.

[13]  D. Weinberg,et al.  Baryons in the Warm-Hot Intergalactic Medium , 2000, astro-ph/0007217.

[14]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[15]  Constrained Simulations of the Real Universe: The Local Supercluster , 2001, astro-ph/0107104.

[16]  D. Henley,et al.  Comparing Suzaku and XMM-Newton Observations of the Soft X-Ray Background: Evidence for Solar Wind Charge Exchange Emission , 2007, 0712.3538.

[17]  G. Tagliaferri,et al.  STUDYING THE WHIM CONTENT OF LARGE-SCALE STRUCTURES ALONG THE LINE OF SIGHT TO H 2356-309 , 2010, 1004.5359.

[18]  Luigi Piro,et al.  STUDYING THE WARM HOT INTERGALACTIC MEDIUM WITH GAMMA-RAY BURSTS , 2009 .

[19]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[20]  A. Finoguenov,et al.  Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223 , 2008, 0803.2525.

[21]  D. Weinberg,et al.  A Lower Bound on the Cosmic Baryon Density , 1997, astro-ph/9701012.

[22]  R. Cen,et al.  Received; Accepted , 1993 .

[23]  B. Oppenheimer,et al.  The nature and origin of low‐redshift O vi absorbers , 2008, 0806.2866.

[24]  Volker Springel,et al.  The impact of feedback on the low-redshift intergalactic medium , 2009, 0911.0699.

[25]  B. Savage,et al.  COSMIC ORIGINS SPECTROGRAPH AND FUSE OBSERVATIONS OF T ∼ 105 K GAS IN A NEARBY GALAXY FILAMENT , 2010, 1008.2797.

[26]  The Neutral Hydrogen Column Density Towards Q1937-1009 From the Unabsorbed Intrinsic Continuum in the Lyman-alpha Forest. , 1997, astro-ph/9707176.

[27]  Warm–hot intergalactic medium in the Sculptor supercluster , 2004, astro-ph/0402575.

[28]  W. Forman,et al.  Detection of the Angular Correlation of Faint X-Ray Sources , 1995, astro-ph/9510040.

[29]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[30]  C. Danforth,et al.  The Low-z Intergalactic Medium. III. H I and Metal Absorbers at z < 0.4 , 2007, 0709.4030.

[31]  Durham,et al.  Detecting X‐ray filaments in the low‐redshift Universe with XEUS and Constellation‐X , 2002, astro-ph/0210497.

[32]  J. Hughes,et al.  Suzaku Observations of the Local and Distant Hot ISM , 2006, astro-ph/0609832.

[33]  Ryuichi Fujimoto,et al.  Energy spectra of the soft X-ray diffuse emission in fourteen fields observed with Suzaku , 2009, 0903.2981.

[34]  Gianpiero Tagliaferri,et al.  CONFIRMATION OF X-RAY ABSORPTION BY WARM-HOT INTERGALACTIC MEDIUM IN THE SCULPTOR WALL , 2010, 1001.3692.

[35]  K. Covey,et al.  XMM-Newton Observations of the Diffuse X-Ray Background , 2006, astro-ph/0609528.

[36]  U. N. Dame,et al.  A High-Resolution Survey of Low-Redshift QSO Absorption Lines: Statistics and Physical Conditions of O VI Absorbers , 2007, 0706.1214.

[37]  X-Ray Flux from the Warm-Hot Intergalactic Medium , 2006, astro-ph/0604175.

[38]  D. J. Christian,et al.  Spectral analysis of the Chandra comet survey , 2007, 0704.1648.

[39]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[40]  F. Paerels,et al.  Future Instrumentation for the Study of the Warm-Hot Intergalactic Medium , 2008, 0801.1064.

[41]  Soft X-Ray Transmission Spectroscopy of a Warm/Hot Intergalactic Medium with XEUS , 2005, astro-ph/0504594.

[42]  A. Gupta,et al.  EVIDENCE FOR THE MISSING BARYONS IN THE ANGULAR CORRELATION OF THE DIFFUSE X-RAY BACKGROUND , 2008, 0812.2219.

[43]  Renyue Cen,et al.  Where Are the Baryons? III. Nonequilibrium Effects and Observables , 2006 .

[44]  E. Branchini,et al.  Tracing the warm-hot intergalactic medium in the local Universe , 2004, astro-ph/0412566.

[45]  Steven M. Kahn,et al.  On the Putative Detection of z>0 X-ray Absorption Features in the Spectrum of Markarian 421 , 2006 .

[46]  TRACING THE WARM-HOT INTERGALACTIC MEDIUM AT LOW REDSHIFT: X-RAY FOREST OBSERVATIONS TOWARD H1821+643 , 2002, astro-ph/0206121.

[47]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[48]  Ryuichi Fujimoto,et al.  The Suzaku High Resolution X-Ray Spectrometer , 2007 .

[49]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[50]  J. Michael Shull,et al.  The Low-z Intergalactic Medium. I. O VI Baryon Census , 2005 .

[51]  D. Henley,et al.  An XMM-Newton Observation of the Local Bubble Using a Shadowing Filament in the Southern Galactic Hemisphere , 2007, astro-ph/0701834.

[52]  M. Fukugita,et al.  The Cosmic Energy Inventory , 2004, astro-ph/0406095.

[53]  CHANDRA OBSERVATIONS OF MBM 12 AND MODELS OF THE LOCAL BUBBLE , 2005, astro-ph/0501056.

[54]  Ryuichi Fujimoto,et al.  Locating the warm-hot intergalactic medium in the simulated local universe , 2004, astro-ph/0408140.

[55]  Jeremiah P. Ostriker,et al.  Cosmic Chemical Evolution , 1999, astro-ph/9903207.

[56]  Lars Hernquist,et al.  Hydrodynamic Simulation of the Cosmological X-Ray Background , 2000, astro-ph/0010345.

[57]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[58]  Probing Warm-Hot Intergalactic Medium Associated with the Virgo Cluster Using an Oxygen Absorption Line , 2004, astro-ph/0409010.

[59]  L. Moscardini,et al.  Properties of the diffuse X-ray background in a high-resolution hydrodynamical simulation , 2005, astro-ph/0507643.

[60]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[61]  B. O’Shea,et al.  THE NATURE OF THE WARM/HOT INTERGALACTIC MEDIUM. I. NUMERICAL METHODS, CONVERGENCE, AND O vi ABSORPTION , 2010, 1009.0261.

[62]  P. Giommi,et al.  EDGE: Explorer of diffuse emission and gamma-ray burst explosions , 2007, SPIE Optical Engineering + Applications.

[63]  Manabu Ishida,et al.  DIOS: the diffuse intergalactic oxygen surveyor: status and prospects , 2010, Astronomical Telescopes + Instrumentation.

[64]  L. Moscardini,et al.  Studying the WHIM with Gamma Ray Bursts , 2009, 0903.1861.

[65]  M. Markevitch,et al.  Can Chandra Resolve the Remaining Cosmic X-Ray Background? , 2007, 0706.3089.

[66]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[67]  M. Galeazzi,et al.  EFFECT OF METALLICITY ON X-RAY EMISSION FROM THE WARM-HOT INTERGALACTIC MEDIUM , 2010, 1007.3274.

[68]  J. Bregman The Search for the Missing Baryons at Low Redshift , 2007, 0706.1787.

[69]  V. Springel,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2004 .

[70]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[71]  T. Barlow,et al.  The Metallicity of Low-Redshift Lyα Forest Clouds , 1998 .

[72]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[73]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[74]  S. H. Moseley,et al.  A High Spectral Resolution Observation of the Soft X-Ray Diffuse Background with Thermal Detectors , 2000, astro-ph/0205012.

[75]  Antonella Fruscione,et al.  The mass of the missing baryons in the X-ray forest of the warm–hot intergalactic medium , 2005, Nature.

[76]  Y. Suto,et al.  Detectability of the Warm/Hot Intergalactic Medium through Emission Lines of O VII and O VIII , 2003, astro-ph/0303281.

[77]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[78]  Line ratios for helium-like ions: Applications to collision-dominated plasmas ? , 2001, astro-ph/0107329.

[79]  A. Gupta,et al.  PROPERTIES OF THE DIFFUSE X-RAY BACKGROUND TOWARD MBM20 WITH SUZAKU , 2009, 0910.3971.

[80]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[81]  J. Michael Shull,et al.  BROAD H i ABSORBERS AS METALLICITY-INDEPENDENT TRACERS OF THE WARM-HOT INTERGALACTIC MEDIUM , 2009, 0912.1603.

[82]  Ryuichi Fujimoto,et al.  Evidence for Solar-Wind Charge-Exchange X-Ray Emission from the Earth's Magnetosheath(Chapter 4. Warm and Hot IntraGalactic Medium, The Extreme Universe in the Suzaku Era) , 2006, astro-ph/0609308.

[83]  B. Savage,et al.  HIGHLY IONIZED PLASMA IN THE HALO OF A LUMINOUS SPIRAL GALAXY NEAR z = 0.225 , 2010, 1003.0446.

[84]  F. Mannucci,et al.  A galaxy overdensity at z = 0.401 associated with an X-ray emitting structure of warm-hot intergalactic medium , 2007, astro-ph/0703076.