Mixed formulation of nonlinear beam on foundation elements

This paper presents an inelastic element for the analysis of beams on foundations. The element is derived from a two-field mixed formulation with independent approximation of forces and displacements. The state determination algorithm for the implementation of the element in a general purpose nonlinear finite element analysis program is presented and its stability characteristics are discussed. Numerical studies are performed to compare the model with the classical displacement formulation. The studies confirm the superiority of the proposed model in describing the inelastic behavior of beams on foundations.

[1]  O. C. Zienkiewicz,et al.  The Finite Element Method: Basic Formulation and Linear Problems , 1987 .

[2]  David P. Thambiratnam,et al.  Free vibration analysis of beams on elastic foundation , 1996 .

[3]  Y. Weitsman,et al.  Onset of separation between a beam and a tensionless elastic foundation under a moving load , 1971 .

[4]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[5]  Metin Aydoğan,et al.  Stiffness-Matrix Formulation of Beams with Shear Effect on Elastic Foundation , 1995 .

[6]  George G. Adams,et al.  A Steadily Moving Load on an Elastic Beam Resting on a Tensionless Winkler Foundation , 1979 .

[7]  F. Filippou,et al.  MIXED FORMULATION OF BOND-SLIP PROBLEMS UNDER CYCLIC LOADS , 1999 .

[8]  B. R. Becker,et al.  Dynamic Response of Beams on Elastic Foundation , 1992 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  Fukashi Miyahara,et al.  Matrix Analysis of Structure-Foundation Interaction , 1976 .

[11]  Joseph E. Bowles,et al.  Analytical and computer methods in foundation engineering , 1974 .

[12]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[13]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[14]  Ashraf Ayoub,et al.  A two-field mix variational principle for partially connected composite beams , 2001 .

[15]  Moshe Eisenberger,et al.  EXACT STIFFNESS MATRIX FOR BEAMS ON ELASTIC FOUNDATION , 1985 .

[16]  Moshe Eisenberger,et al.  Analysis of a beam column on elastic foundation , 1986 .

[17]  G. A. Mohr,et al.  A contact stiffness matrix for finite element problems involving external elastic restraint , 1980 .

[18]  N. S. V. Kameswara Rao,et al.  Onset of Separation Between a Beam and Tensionless Foundation Due to Moving Loads , 1974 .

[19]  Ashraf Ayoub,et al.  MIXED FORMULATION OF NONLINEAR STEEL-CONCRETE COMPOSITE BEAM ELEMENT , 2000 .

[20]  Ross W. Boulanger,et al.  Nonlinear Seismic Soil-Pile Structure Interaction , 1998 .

[21]  Fred W. Beaufait,et al.  Analysis of elastic beams on nonlinear foundations , 1980 .

[22]  M. S. Kaschiev,et al.  A beam resting on a tensionless Winkler foundation , 1995 .

[23]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[24]  Anil K. Chopra,et al.  Earthquake response of structures with partial uplift on winkler foundation , 1984 .

[25]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[26]  Eldon F. Mockry,et al.  Beam on Elastic Foundation Finite Element , 1984 .

[27]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[28]  Keshavan Nair,et al.  Finite Beams on Elastic Foundations , 1966 .