A Geometric Approach to Stationary Defect Solutions in One Space Dimension

In this manuscript, we consider the impact of a small jump-type spatial heterogeneity on the existence of stationary localized patterns in a system of partial differential equations in one spatial dimension, i.e., defined on $\mathbb{R}$. This problem corresponds to analyzing a discontinuous and non-autonomous $n$-dimensional system, $\scriptsize\dot{u}=\left\{ \begin{array}{ll} f(u),& t\leq0,\\ f(u)+\varepsilon g(u),& t>0, \end{array}\right.$ under the assumption that the unperturbed system, i.e., the $\varepsilon \to 0$ limit system, possesses a heteroclinic orbit $\Gamma$ that connects two hyperbolic equilibrium points (plus several additional nondegeneracy conditions). The unperturbed orbit $\Gamma$ represents a localized structure in the PDE setting. We define the (pinned) defect solution $\Gamma_\varepsilon$ as a heteroclinic solution to the perturbed system such that $\lim_{\varepsilon \to 0} \Gamma_\varepsilon = \Gamma$ (as graphs). We distinguish between three types of defect solutions: trivial, ...

[1]  Yoshihisa Morita,et al.  Planar Standing Wavefronts in the FitzHugh-Nagumo Equations , 2014, SIAM J. Math. Anal..

[2]  Arjen Doelman,et al.  Semistrong Pulse Interactions in a Class of Coupled Reaction-Diffusion Equations , 2003, SIAM J. Appl. Dyn. Syst..

[3]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[4]  R. K. Jackson,et al.  An Instability Criterion for Nonlinear Standing Waves on Nonzero Backgrounds , 2012, J. Nonlinear Sci..

[5]  Keith Promislow,et al.  A Renormalization Method for Modulational Stability of Quasi-Steady Patterns in Dispersive Systems , 2002, SIAM J. Math. Anal..

[6]  Björn Sandstede,et al.  Defects in Oscillatory Media: Toward a Classification , 2004, SIAM J. Appl. Dyn. Syst..

[7]  Irving R Epstein,et al.  Localized patterns in reaction-diffusion systems. , 2007, Chaos.

[8]  Peter van Heijster,et al.  Pinned fronts in heterogeneous media of jump type , 2010 .

[9]  Shin-Ichiro Ei,et al.  The Motion of Weakly Interacting Pulses in Reaction-Diffusion Systems , 2002 .

[10]  James D. Meiss,et al.  Differential dynamical systems , 2007, Mathematical modeling and computation.

[11]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[12]  N. Dirr,et al.  Pinning and de-pinning phenomena in front propagation in heterogeneous media , 2006 .

[13]  Albert C. J. Luo,et al.  Discontinuous Dynamical Systems , 2012 .

[14]  C. Pegrum Can a Fraction of a Quantum Be Better Than a Whole One? , 2006, Science.

[15]  Controllable plasma energy bands in a one-dimensional crystal of fractional Josephson vortices , 2004, cond-mat/0412295.

[16]  Dee Gt,et al.  Bistable systems with propagating fronts leading to pattern formation. , 1988 .

[17]  Björn Sandstede,et al.  Bifurcations to travelling planar spots in a three-component FitzHugh-Nagumo system , 2014 .

[18]  P. Coullet,et al.  Nature of spatial chaos. , 1987, Physical review letters.

[19]  J. Murray,et al.  A quantitative model for differential motility of gliomas in grey and white matter , 2000, Cell proliferation.

[20]  Christopher J. K. Knight,et al.  Pinned fluxons in a Josephson junction with a finite-length inhomogeneity , 2011, European Journal of Applied Mathematics.

[21]  Masayasu Mimura,et al.  Pulse–pulse interaction in reaction–diffusion systems , 2002 .

[22]  Mario di Bernardo,et al.  Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the DC/DC buck converter , 1998 .

[23]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[24]  Peter van Heijster,et al.  Pulse Dynamics in a Three-Component System: Existence Analysis , 2009 .

[25]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[26]  Shin-ichiro Ei,et al.  Front dynamics in heterogeneous diffusive media , 2010 .

[27]  J. Tyson,et al.  Steady-state autowave patterns in a two-dimensional excitable medium with a band of different excitability , 1997 .

[28]  William C. Troy,et al.  A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation , 1995 .

[29]  Chao-Nien Chen,et al.  Stability analysis for standing pulse solutions to FitzHugh–Nagumo equations , 2014 .

[30]  W. Zimmermann,et al.  Propagating fronts near a Lifshitz point. , 1991, Physical review letters.

[31]  Peter van Heijster,et al.  Butterfly Catastrophe for Fronts in a Three-Component Reaction–Diffusion System , 2015, J. Nonlinear Sci..

[32]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[33]  Keith Promislow,et al.  Nonlinear Asymptotic Stability of the Semistrong Pulse Dynamics in a Regularized Gierer-Meinhardt Model , 2007, SIAM J. Math. Anal..

[34]  G. Derks Stability of Fronts in Inhomogeneous Wave Equations , 2015 .

[35]  W. Schleich,et al.  Quantum tunneling of semifluxons in a 0-π-0 long Josephson junction , 2005, cond-mat/0504507.

[36]  H. Purwins,et al.  Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier , 2014 .

[37]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[38]  Chao-Nien Chen,et al.  Traveling pulse solutions to FitzHugh–Nagumo equations , 2015 .

[39]  L. Peletier,et al.  Spatial Patterns: Higher Order Models in Physics and Mechanics , 2001 .

[40]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[41]  Keith Promislow,et al.  Front Interactions in a Three-Component System , 2010, SIAM J. Appl. Dyn. Syst..

[42]  Peter van Heijster,et al.  Pulse dynamics in a three-component system : stability and bifurcations , 2008 .

[43]  Christopher J. K. Knight,et al.  Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity , 2013 .

[44]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[45]  Takashi Teramoto,et al.  Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Björn Sandstede,et al.  Planar Radial Spots in a Three-Component FitzHugh–Nagumo System , 2011, J. Nonlinear Sci..

[47]  Mathias Bode,et al.  Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains , 1997 .

[48]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[49]  William D. Kalies,et al.  MULTITRANSITION HOMOCLINIC AND HETEROCLINIC SOLUTIONS OF THE EXTENDED FISHER-KOLMOGOROV EQUATION , 1996 .

[50]  Andreas W. Liehr,et al.  Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system , 2002 .

[51]  P. Holmes,et al.  Homoclinic explosions and implosions , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[52]  Kei-Ichi Ueda,et al.  Scattering and separators in dissipative systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  A stability criterion for the non-linear wave equation with spatial inhomogeneity , 2014, 1411.5277.

[54]  T. Kaper,et al.  A computational model for BMP movement in sea urchin embryos. , 2014, Journal of theoretical biology.

[55]  Christopher K. R. T. Jones,et al.  Unstable gap solitons in inhomogeneous nonlinear Schrödinger equations , 2012 .

[56]  P. Maini,et al.  Diffusion driven instability in an inhomogeneous domain , 1993 .

[57]  Björn Sandstede,et al.  Homoclinic and heteroclinic bifurcations in vector fields , 2010 .

[58]  H. Susanto,et al.  Localized standing waves in inhomogeneous Schrödinger equations , 2010, 1002.3561.

[59]  A. Scott,et al.  Perturbation analysis of fluxon dynamics , 1978 .

[60]  Chao-Nien Chen,et al.  Standing Pulse Solutions to FitzHugh–Nagumo Equations , 2012 .

[61]  Mathias Bode,et al.  Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation , 1998 .

[62]  David M. Umulis,et al.  Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. , 2010, Developmental cell.