Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT

We have determined to 2.6 A resolution the crystal structure of the thermosome, the archaeal group II chaperonin from T. acidophilum. The hexadecameric homolog of the eukaryotic chaperonin CCT/TRiC shows an (alphabeta)4(alphabeta)4 subunit assembly. Domain folds are homologous to GroEL but form a novel type of inter-ring contact. The domain arrangement resembles the GroEL-GroES cis-ring. Parts of the apical domains form a lid creating a closed conformation. The lid substitutes for a GroES-like cochaperonin that is absent in the CCT/TRiC system. The central cavity has a polar surface implicated in protein folding. Binding of the transition state analog Mg-ADP-AIF3 suggests that the closed conformation corresponds to the ATP form.

[1]  Neil A. Ranson,et al.  Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy , 1994, Nature.

[2]  F. Hartl,et al.  Protein folding in the cell: competing models of chaperonin function , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  W. Baumeister,et al.  The molecular chaperone TF55 , 1994, FEBS letters.

[4]  G. Farr,et al.  Chaperonin-Mediated Folding in the Eukaryotic Cytosol Proceeds through Rounds of Release of Native and Nonnative Forms , 1997, Cell.

[5]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[6]  K. Waltersson,et al.  The crystal structure of Cs[VOF3] · 12H2O , 1979 .

[7]  H. Hamm,et al.  GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF−4 , 1994, Nature.

[8]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[9]  Zbyszek Otwinowski,et al.  The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS , 1996, Nature Structural Biology.

[10]  K. Willison,et al.  Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. , 1994, Trends in biochemical sciences.

[11]  W. Baumeister,et al.  Chaperonin‐mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. , 1992, The EMBO journal.

[12]  A. Horwich,et al.  Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL , 1997, Nature.

[13]  F. Hartl Molecular chaperones in cellular protein folding , 1996, Nature.

[14]  W. Baumeister,et al.  Purification and structural characterization of the thermosome from the hyperthermophilic archaeum Methanopyrus kandleri , 1996, FEBS letters.

[15]  H. Saibil,et al.  T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol , 1992, Nature.

[16]  W. Wooster,et al.  Crystal structure of , 2005 .

[17]  Walid A Houry,et al.  In Vivo Observation of Polypeptide Flux through the Bacterial Chaperonin System , 1997, Cell.

[18]  Michael B. Yaffe,et al.  TCP1 complex is a molecular chaperone in tubulin biogenesis , 1992, Nature.

[19]  Yechezkel Kashi,et al.  GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms , 1994, Cell.

[20]  J. Carrascosa,et al.  The formation of symmetrical GroEL‐GroES complexes in the presence of ATP , 1994, FEBS letters.

[21]  G. Lorimer,et al.  Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins , 1992, Protein science : a publication of the Protein Society.

[22]  G. Farr,et al.  Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin. , 1996, Biochemistry.

[23]  G J Kleywegt,et al.  Detection, delineation, measurement and display of cavities in macromolecular structures. , 1994, Acta crystallographica. Section D, Biological crystallography.

[24]  J. Deisenhofer,et al.  The crystal structure of the GroES co-chaperonin at 2.8 Å resolution , 1996, Nature.

[25]  A. Horovitz,et al.  Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196-->Ala. , 1994, Journal of molecular biology.

[26]  F. Hartl,et al.  Function in protein folding of TRiC, a cytosolic ring complex containing TCP‐1 and structurally related subunits. , 1992, The EMBO journal.

[27]  C. Georgopoulos,et al.  Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[28]  John O. Thomas,et al.  A cytoplasmic chaperonin that catalyzes β-actin folding , 1992, Cell.

[29]  J. Weissman,et al.  Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes , 1995, Cell.

[30]  W. Baumeister,et al.  Structure of the Substrate Binding Domain of the Thermosome, an Archaeal Group II Chaperonin , 1997, Cell.

[31]  Roger W. Hendrix,et al.  Homologous plant and bacterial proteins chaperone oligomeric protein assembly , 1988, Nature.

[32]  N. Cowan,et al.  Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates , 1994, Molecular and cellular biology.

[33]  Reiner Hegerl,et al.  Structure of a molecular chaperone from a thermophilic archaebacterium , 1993, Nature.

[34]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[35]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[36]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[37]  W. Baumeister,et al.  A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. , 1991, The EMBO journal.

[38]  T. D. Brock,et al.  Bacillus acidocaldarius sp.nov., an Acidophilic Thermophilic Spore-forming Bacterium , 1971 .

[39]  F. Hartl,et al.  Mechanism of chaperonin action: GroES binding and release can drive GroEL‐mediated protein folding in the absence of ATP hydrolysis. , 1996, The EMBO journal.

[40]  S. Chen,et al.  ATP induces large quaternary rearrangements in a cage-like chaperonin structure , 1993, Current Biology.

[41]  T. A. Jones,et al.  A graphics model building and refinement system for macromolecules , 1978 .

[42]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[43]  Richard I. Morimoto,et al.  1 Progress and Perspectives on the Biology of Heat Shock Proteins and Molecular Chaperones , 1994 .

[44]  A. Fersht,et al.  Cooperativity in ATP hydrolysis by GroEL is increased by GroES , 1991, FEBS letters.

[45]  Y. Kashi,et al.  Residues in chaperonin GroEL required for polypeptide binding and release , 1994, Nature.

[46]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[47]  W. Baumeister,et al.  The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC , 1995 .

[48]  G J Barton,et al.  ALSCRIPT: a tool to format multiple sequence alignments. , 1993, Protein engineering.

[49]  K. Willison,et al.  12 The Structure, Function, and Genetics of the Chaperonin Containing TCP-1 (CCT) in Eukaryotic Cytosol , 1994 .

[50]  W. Baumeister,et al.  Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes , 1995, Science.

[51]  K. Furtak,et al.  Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL , 1993, Cell.

[52]  F. Hartl,et al.  Protein folding in the central cavity of the GroEL–GroES chaperonin complex , 1996, Nature.

[53]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[54]  W. Baumeister,et al.  The thermosome: alternating alpha and beta-subunits within the chaperonin of the archaeon Thermoplasma acidophilum. , 1997, Journal of molecular biology.

[55]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[56]  A. Ashworth,et al.  Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin , 1994, Current Biology.

[57]  J. Martín,et al.  Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding , 1995, Science.

[58]  S. Mande,et al.  Structure of the Heat Shock Protein Chaperonin-10 of Mycobacterium leprae , 1996, Science.

[59]  J. Janin,et al.  AlF3 mimics the transition state of protein phosphorylation in the crystal structure of nucleoside diphosphate kinase and MgADP. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Carrascosa,et al.  Reversible interaction of beta-actin along the channel of the TCP-1 cytoplasmic chaperonin. , 1994, Biophysical journal.

[61]  F. Hartl,et al.  A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1 , 1991, Nature.

[62]  A. D. Kaiser,et al.  Host participation in bacteriophage lambda head assembly. , 1973, Journal of molecular biology.

[63]  S. Radford,et al.  Structural and mechanistic consequences of polypeptide binding by GroEL. , 1997, Folding & design.

[64]  M. Kessel,et al.  Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. , 1994, Science.

[65]  T. Atkinson,et al.  Affinity of chaperonin-60 for a protein substrate and its modulation by nucleotides and chaperonin-10. , 1994, The Biochemical journal.

[66]  J. Sambrook,et al.  Protein folding in the cell , 1992, Nature.

[67]  R. Jaenicke,et al.  Symmetric complexes of GroE chaperonins as part of the functional cycle. , 1994, Science.

[68]  L. Cerchia,et al.  The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro , 1994, Protein science : a publication of the Protein Society.

[69]  Helen R Saibil,et al.  The Chaperonin ATPase Cycle: Mechanism of Allosteric Switching and Movements of Substrate-Binding Domains in GroEL , 1996, Cell.

[70]  A. Horwich,et al.  GroEL‐Mediated protein folding , 1997, Protein science : a publication of the Protein Society.

[71]  S. Knapp,et al.  The molecular chaperonin TF55 from the Thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. , 1994, Journal of molecular biology.

[72]  J. Weissman,et al.  Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction , 1996, Cell.

[73]  W. Kabsch,et al.  Atomic structure of the actin: DNase I complex , 1990, Nature.

[74]  R. Williams,et al.  Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. , 1997, Biochemistry.

[75]  D. Bacon,et al.  A fast algorithm for rendering space-filling molecule pictures , 1988 .

[76]  F. Hartl,et al.  Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria , 1989, Nature.

[77]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[78]  M. Yaffe,et al.  The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.