Semi-empirical modeling of non-linear dynamic systems through identification of operating regimes and local models

An off-line algorithm for semi-empirical modeling of nonlinear dynamic systems is presented. The model representation is based on the interpolation of a number of simple local models, where the validity of each local model is restricted to an operating regime, but where the local models yield a complete global model when interpolated. The input to the algorithm is a sequence of empirical data and a set of candidate local model structures. The algorithm searches for an optimal decomposition into operating regimes, and local model structures. The method is illustrated using simulated and real data. The transparency of the resulting model and the flexibility with respect to incorporation of prior knowledge is discussed.

[1]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[2]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[3]  R. Shibata Selection of the order of an autoregressive model by Akaike's information criterion , 1976 .

[4]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[5]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[6]  J. Bezdek,et al.  Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof , 1981 .

[7]  Torsten Söderström,et al.  Model-structure selection by cross-validation , 1986 .

[8]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  E. Ziegel,et al.  Artificial intelligence and statistics , 1986 .

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[12]  S. Qian,et al.  Nonlinear adaptive networks: A little theory, a few applications , 1990 .

[13]  Einar Sørheim A Combined Network Architecture Using Art2 and Back Propagation for Adaptive Estimation of Dynamic Processes , 1990 .

[14]  T. Kavli Nonuniformly Partitioned Piecewise Linear Representation of Continuous Learned Mappings , 1990, Proceedings of the IEEE International Workshop on Intelligent Motion Control.

[15]  John A. Hertz,et al.  Exploiting Neurons with Localized Receptive Fields to Learn Chaos , 1990, Complex Syst..

[16]  J. Friedman Multivariate adaptive regression splines , 1990 .

[17]  E. Sorheim,et al.  A combined network architecture using ART2 and back propagation for adaptive estimation of dynamical processes , 1991, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences.

[18]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[19]  Lennart Ljung,et al.  Construction of Composite Models from Observed Data , 1992 .

[20]  Jan Larsen,et al.  A generalization error estimate for nonlinear systems , 1992, Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop.

[21]  T. Johansen,et al.  Constructing NARMAX models using ARMAX models , 1993 .

[22]  T. Kavli ASMO—Dan algorithm for adaptive spline modelling of observation data , 1993 .

[23]  Lyle H. Ungar,et al.  A comparison of two nonparametric estimation schemes: MARS and neural networks , 1993 .

[24]  Dimitar Filev,et al.  Unified structure and parameter identification of fuzzy models , 1993, IEEE Trans. Syst. Man Cybern..

[25]  W. Pedrycz,et al.  Construction of fuzzy models through clustering techniques , 1993 .

[26]  T. Johansen,et al.  State-Space Modeling using Operating Regime Decomposition and Local Models , 1993 .

[27]  Dale E. Seborg,et al.  Application of a general multi-model approach for identification of highly nonlinear processes-a case study , 1993 .

[28]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[29]  Henrik Gollee,et al.  A constructive learning algorithm for local model networks , 1994 .

[30]  Roderick Murray-Smith,et al.  Local model networks and local learning , 1994 .

[31]  Bjørn Lillekjendlie,et al.  A comparison of four methods for non-linear data modelling , 1994 .