Current-density implementation for calculating flexoelectric coefficients

Flexoelectricity, where a voltage is induced in an insulator by a strain gradient, becomes increasingly important as electronic devices shrink to the nanoscale. In order to develop a quantitative understanding of the flexoelectric effect in materials, the authors have developed and implemented a first-principles methodology based on density functional perturbation theory to calculate the flexoelectric response. The strategy of mapping a strain gradient onto a long-wavelength acoustic phonon, and calculating the electrical response via the current density, allows the full flexoelectric tensor to be determined with unprecedented accuracy and efficiency. This paves the way for an improved understanding of the underlying mechanisms responsible for flexoelectric effects, thus promising improved control of these effects in the context of nanoelectronic devices.

[1]  D. Thouless,et al.  Quantization of particle transport , 1983 .

[2]  D. Vanderbilt,et al.  First-principles theory and calculation of flexoelectricity , 2013, 1307.0132.

[3]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[4]  Joel E. Moore,et al.  Orbital magnetoelectric coupling in band insulators , 2010, 1002.0290.

[5]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[6]  Anna N. Morozovska,et al.  Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction , 2012 .

[7]  G. A. Candela,et al.  Magnetic Susceptibility of Insulating and Semiconducting Strontium Titanate , 1966 .

[8]  A. Tagantsev,et al.  Bichiral structure of ferroelectric domain walls driven by flexoelectricity , 2012, 1207.5507.

[9]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[10]  Richard M. Martin,et al.  Microscopic theory of force constants in the adiabatic approximation , 1970 .

[11]  D. Vanderbilt,et al.  First-principles theory of frozen-ion flexoelectricity , 2011, 1108.4997.

[12]  A. D. Corso,et al.  Inside dielectrics: Microscopic and macroscopic polarization , 2001 .

[13]  Louie,et al.  Magnetic susceptibility of insulators from first principles. , 1996, Physical review letters.

[14]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[15]  G. Catalan,et al.  Strain gradients in epitaxial ferroelectrics , 2004, cond-mat/0411471.

[16]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[17]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[18]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[19]  Umesh Kumar Bhaskar,et al.  A flexoelectric microelectromechanical system on silicon. , 2016, Nature nanotechnology.

[20]  Louie,et al.  Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators. , 1987, Physical review. B, Condensed matter.

[21]  Francesco Mauri,et al.  Nonlocal pseudopotentials and magnetic fields. , 2003, Physical review letters.

[22]  Gustau Catalan,et al.  The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films , 2004 .

[23]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[24]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[25]  Louie,et al.  Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids. , 1996, Physical review letters.

[26]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[27]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[28]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[29]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[30]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[31]  A. Tagantsev,et al.  Fundamentals of flexoelectricity in solids , 2013, Nanotechnology.

[32]  M. Stengel Flexoelectricity from density-functional perturbation theory , 2013, 1306.4240.

[33]  A. Starace Length and Velocity Formulas in Approximate Oscillator-Strength Calculations , 1971 .

[34]  Andrew G. Glen,et al.  APPL , 2001 .

[35]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  M. Stengel Microscopic response to inhomogeneous deformations in curvilinear coordinates , 2013, Nature Communications.

[37]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  P. B. Allen,et al.  Deformation potentials and electron-phonon scattering: Two new theorems , 1984 .

[40]  Stephen L. Adler,et al.  Quantum theory of the dielectric constant in real solids. , 1962 .

[41]  Sergei V. Kalinin,et al.  Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction , 2012, Nature Communications.

[42]  A. Tagantsev,et al.  Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors , 2003 .

[43]  M. Stengel Surface control of flexoelectricity , 2014, 1402.2121.

[44]  富野 康日己,et al.  Annual review 腎臓 , 1987 .

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[47]  Chem. , 2020, Catalysis from A to Z.

[48]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[49]  S G Louie,et al.  Coupling of nonlocal potentials to electromagnetic fields. , 2001, Physical review letters.

[50]  P. V. Yudin,et al.  Flexoelectricity in Solids:From Theory to Applications , 2016 .

[51]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[52]  T. Noh,et al.  Giant flexoelectric effect in ferroelectric epitaxial thin films. , 2011, Physical Review Letters.

[53]  Jian Wang,et al.  Definition of current density in the presence of a non-local potential , 2008, Nanotechnology.

[54]  Baroni,et al.  Density-functional theory of the dielectric constant: Gradient-corrected calculation for silicon. , 1994, Physical Review B (Condensed Matter).

[55]  First-principles theory of the EPR g tensor in solids: defects in quartz. , 2001, Physical review letters.

[56]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[57]  Vignale Orbital paramagnetism of electrons in a two-dimensional lattice. , 1991, Physical review letters.

[58]  David Vanderbilt Berry-phase theory of proper piezoelectric response , 1999 .

[59]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[60]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[61]  D. Thouless,et al.  Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction , 1984 .

[62]  Wenyi Zhu,et al.  Piezoelectric composite based on the enhanced flexoelectric effects , 2006 .