Synchronization of Time-Delay Chua's Oscillator with Application to Secure Communication

In this paper, we use a Generalized Hamiltonian systems approach to synchronize the time-delay-feedback Chua's oscillator (hyperchaotic circuit with multiple positive Lyapunov exponents). Synchronization is thus between the transmitter and the receiver dynamics with the receiver being given by an observer. We apply this approach to transmit private analog and binary in- formation signals in which the quality of the recovered signal is higher than in traditional observer techniques while the encoding remains potentially secure.

[1]  Fumio Harashima,et al.  Brushless servo motor control using variable structure approach , 1988 .

[2]  S. Timoshenko,et al.  Robust Stability: Three Approaches for Discrete-Time Systems , 2002 .

[3]  Ute Feldmann,et al.  Communication by chaotic signals: the inverse system approach , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[4]  Karolos M. Grigoriadis,et al.  Stabilization and H∞ control of symmetric systems: an explicit solution , 2001, Syst. Control. Lett..

[5]  H, Control for Discrete-time Linear Systems with Fkobenius Norm-Bounded Uncertainties , 1998 .

[6]  A. Michel,et al.  Stability analysis for a class of nonlinear switched systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[7]  Songjiao Shi,et al.  A descriptor-system approach to singular perturbation of linear regulators , 1988 .

[8]  M. Malek-Zavarei,et al.  Time-Delay Systems: Analysis, Optimization and Applications , 1987 .

[9]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[10]  A. Zapp,et al.  Stability and Hopf Bifurcation in Differential Equations with One Delay , 2001 .

[11]  Stabilizing a Class of Two-Dimensional Bilinear Systems with Finite-State Hybrid Constant Feedback , 2002 .

[12]  Robert W. Newcomb,et al.  Some circuits and systems applications of semistate theory , 1989 .

[13]  Liang Jin,et al.  Absolute stability conditions for discrete-time recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[14]  Stability of the Stationary Solutions of the Differential Equations of Restricted Newtonian Problem with Incomplete Symmetry , 2004 .

[15]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[16]  R. Krishnan,et al.  Electric Motor Drives: Modeling, Analysis, and Control , 2001 .

[17]  Donato Trigiante,et al.  THEORY OF DIFFERENCE EQUATIONS Numerical Methods and Applications (Second Edition) , 2002 .

[18]  W. Kwon,et al.  Memoryless H∞ controllers for state delayed systems , 1994, IEEE Trans. Autom. Control..

[19]  Naser F. Al-Muthairi,et al.  Quadratic stabilization of continuous time systems with state-delay and norm-bounded time-varying uncertainties , 1994, IEEE Trans. Autom. Control..

[20]  ANA Y. AGUILAR-BUSTOS,et al.  Synchronization of two hyperchaotic R ö ssler systems : Model-matching approach 1 , 2005 .

[21]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[22]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[23]  J. CHAOTIC ATTRACTORS OF AN INFINITE-DIMENSIONAL DYNAMICAL SYSTEM , 2002 .

[24]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..

[25]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[26]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[27]  Joao P. Hespanha,et al.  Logic-based switching algorithms in control , 1998 .

[28]  W. Thomson Equations of motion for the variable mass system. , 1966 .

[29]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[30]  Xiaofan Wang,et al.  Generating chaos in Chua's circuit via time-delay feedback , 2001 .

[31]  Dragoslav D. Šiljak,et al.  Large-Scale Dynamic Systems: Stability and Structure , 1978 .

[32]  A. Michel,et al.  Robustness and Perturbation Analysis of a Class of Nonlinear Systems with Applications to Neural Networks , 1993, 1993 American Control Conference.

[33]  F. Eke,et al.  Attitude Behavior of a Variable Mass Cylinder , 1995 .

[34]  Jan C. Willems,et al.  REALIZATION OF SYSTEMS WITH INTERNAL PASSIVITY AND SYMMETRY CONSTRAINTS , 1976 .

[35]  A. Michel,et al.  Hybrid output feedback stabilization of two-dimensional linear control systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[36]  S. Pettersson,et al.  Hybrid system stability and robustness verification using linear matrix inequalities , 2002 .

[37]  Rong-Jong Wai,et al.  Development of Industrial Servo Control System for Elevator-Door Mechanism Actuated by Direct-Drive Induction Machine , 2004 .

[38]  F. Eke,et al.  Attitude Dynamics of a Torque-Free Variable Mass Cylindrical Body , 2000 .

[39]  Peng Shi,et al.  Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay , 1999, IEEE Trans. Autom. Control..

[40]  Peng Shi,et al.  Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters , 1999, IEEE Trans. Autom. Control..

[41]  W. Hahn Theorie und Anwendung der direkten Methode von Ljapunov , 1959 .

[42]  Sing Kiong Nguang,et al.  Robust stabilization of a class of time-delay nonlinear systems , 2000, IEEE Trans. Autom. Control..

[43]  G. Zhai Quadratic stabilizability of discrete-time switched systems via state and output feedback , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[44]  Rong-Jong Wai,et al.  Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network , 2001, IEEE Trans. Ind. Electron..

[45]  Seung-Ki Sul,et al.  Vertical-vibration control of elevator using estimated car acceleration feedback compensation , 2000, IEEE Trans. Ind. Electron..

[46]  A. Michel,et al.  Robustness analysis of a class of discrete-time systems with applications to neural networks , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[47]  L. Pei,et al.  Synchronization of chaotic systems: a generalized Hamiltonian systems approach , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[48]  R. Mukundan,et al.  Memoryless feedback control in uncertain dynamic delay systems , 1986 .

[49]  Kazuhiro Miki,et al.  H∞ Controllers for Symmetric Systems: A Theory for Attitude Control of Large Space Structures , 2001 .

[50]  K. Narendra,et al.  A common Lyapunov function for stable LTI systems with commuting A-matrices , 1994, IEEE Trans. Autom. Control..

[51]  Seung-Ki Sul,et al.  Drive systems for high-speed gearless elevators , 2001 .

[52]  F. Eke,et al.  Equations of Motion of Two-Phase Variable Mass Systems With Solid Base , 1994 .

[53]  Hannu Tenhunen,et al.  An integrated digital motion control unit , 1991 .

[54]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[55]  Lihua Xie,et al.  On designing controllers for a class of uncertain sampled-data nonlinear systems , 1993 .

[56]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[57]  Fidelis O. Eke,et al.  Rotational Dynamics of Axisymmetric Variable Mass Systems , 1995 .

[58]  K. Gu H∞ control of systems under norm bounded uncertainties in all system matrices , 1994, IEEE Trans. Autom. Control..

[59]  K. Pyragas,et al.  Transmission of Signals via Synchronization of Chaotic Time-Delay Systems , 1998 .

[60]  Bo Hu,et al.  Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach , 2001, Int. J. Syst. Sci..

[61]  K. Benjelloun,et al.  Robust stabilizability of uncertain linear time delay systems with Markovian jumping parameters , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[62]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[63]  F. Eke,et al.  On the Dynamics of Variable Mass Systems , 2002 .

[64]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[65]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[66]  A. Morse,et al.  Stability of switched systems: a Lie-algebraic condition ( , 1999 .

[67]  Henk Nijmeijer,et al.  Synchronization through Filtering , 2000, Int. J. Bifurc. Chaos.

[68]  Henk Nijmeijer,et al.  Synchronization through extended Kalman filtering , 1999 .

[69]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[70]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[71]  S. Elaydi An introduction to difference equations , 1995 .

[72]  S. Gutman,et al.  Properties of Min-Max Controllers in Uncertain Dynamical Systems , 1982 .

[73]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[74]  D. Siljak,et al.  On stability of discrete composite systems , 1973 .

[75]  M. Safonov,et al.  Simplifying the H∞ theory via loop-shifting, matrix-pencil and descriptor concepts , 1989 .

[76]  Myung Jin Chung,et al.  Memoryless H∞ controller design for linear systems with delayed state and control , 1995, Autom..

[77]  Lihua Xie,et al.  Output feedback H∞ control of systems with parameter uncertainty , 1996 .

[78]  Leon O. Chua,et al.  Cryptography based on chaotic systems , 1997 .

[79]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[80]  Bor-Sen Chen,et al.  Memoryless stabilization of uncertain dynamic delay systems: Riccati equation approach , 1991 .

[81]  Zhenya He,et al.  Chaotic behavior in first-order autonomous continuous-time systems with delay , 1996 .

[82]  L. Meirovitch General Motion of a Variable-Mass Flexible Rocket with Internal Flow , 1970 .

[83]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[84]  El-Kebir Boukas,et al.  Deterministic and Stochastic Time-Delay Systems , 2002 .

[85]  Peng Shi,et al.  Asymptotic H∞ control of singularly perturbed systems with parametric uncertainties , 1999, IEEE Trans. Autom. Control..

[86]  André Longtin,et al.  Synchronization of delay-differential equations with application to private communication , 1998 .

[87]  Jong Hae Kim,et al.  Robust control for parameter uncertain delay systems in state and control input , 1996, Autom..

[88]  Hideki Hashimoto,et al.  Mosfet converter-fed position servo system with sliding mode control , 1983, 1983 IEEE Power Electronics Specialists Conference.

[89]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[90]  S.O.R. Moheimani,et al.  Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[91]  W. Thomson,et al.  Jet Damping of a Solid Rocket: Theory and Flight Results , 1965 .

[92]  E. Boukas,et al.  H∞-Control for Markovian Jumping Linear Systems with Parametric Uncertainty , 1997 .

[93]  Guisheng Zhai,et al.  Stability Analysis for a Class of Switched Systems , 2000 .

[94]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[95]  Werner Leonhard,et al.  Control of Electrical Drives , 1990 .

[96]  Leonarda Carnimeo,et al.  DESIGN OF A HYPERCHAOTIC CRYPTOSYSTEM BASED ON IDENTICAL AND GENERALIZED SYNCHRONIZATION , 1999 .

[97]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[98]  S. Pettersson,et al.  LMI for stability and robustness of hybrid systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[99]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[100]  R. Decarlo,et al.  Construction of piecewise Lyapunov functions for stabilizing switched systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[101]  P. Shi Filtering on sampled-data systems with parametric uncertainty , 1998, IEEE Trans. Autom. Control..

[102]  Jennie Si,et al.  Analysis and synthesis of a class of discrete-time neural networks with multilevel threshold neurons , 1995, IEEE Trans. Neural Networks.

[103]  Il Hong Suh,et al.  On stabilization by local state feedback for discrete-time large-scale systems with delays in interconnections , 1982 .

[104]  Weibing Gao,et al.  Variable structure control of nonlinear systems: a new approach , 1993, IEEE Trans. Ind. Electron..

[105]  C. D. Souza,et al.  Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach , 1997, IEEE Trans. Autom. Control..

[106]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[107]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[108]  Bo Hu,et al.  Disturbance attenuation properties of time-controlled switched systems , 2001, J. Frankl. Inst..

[109]  Rong-Jong Wai,et al.  Adaptive sliding-mode control for induction servomotor drive , 2000 .