Heterochromatin Effects on the Frequency and Duration of LCR-Mediated Gene Transcription

[1]  T. Ley,et al.  Analysis of mice containing a targeted deletion of beta-globin locus control region 5' hypersensitive site 3 , 1996, Molecular and cellular biology.

[2]  F. Grosveld,et al.  Position effects and genetic disease. , 1996, Trends in genetics : TIG.

[3]  D. Kioussis,et al.  Locus Control Region Function and Heterochromatin-Induced Position Effect Variegation , 1996, Science.

[4]  J. D. Engel,et al.  Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. , 1995, Genes & development.

[5]  G. Wahl,et al.  Participation of the Human β-Globin Locus Control Region in Initiation of DNA Replication , 1995, Science.

[6]  T. Ley,et al.  Targeted deletion of 5'HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. , 1995, Genes & development.

[7]  V. Pirrotta,et al.  Chromatin complexes regulating gene expression in Drosophila. , 1995, Current opinion in genetics & development.

[8]  R. Paro,et al.  Chromatin multiprotein complexes involved in the maintenance of transcription patterns. , 1995, Current opinion in genetics & development.

[9]  D. Kioussis,et al.  Random activation of a transgene under the control of a hybrid hCD2 locus control region/Ig enhancer regulatory element. , 1995, The EMBO journal.

[10]  G. Karpen,et al.  Position-effect variegation and the new biology of heterochromatin. , 1994, Current opinion in genetics & development.

[11]  F. Grosveld,et al.  2 The regulation of human globin gene expression , 1993 .

[12]  F. Grosveld,et al.  The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. , 1993, The EMBO journal.

[13]  J. Strouboulis,et al.  Efficient joining of large DNA fragments for transgenesis. , 1992, Nucleic acids research.

[14]  J. Strouboulis,et al.  Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. , 1992, Genes & development.

[15]  J. Sharpe,et al.  A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice , 1992, Molecular and cellular biology.

[16]  C. Bartram,et al.  The proximal element of the beta globin locus control region is not functionally required in vivo. , 1991, The Journal of clinical investigation.

[17]  F. Grosveld,et al.  Hypersensitive site 4 of the human β globin locus control region , 1991 .

[18]  F. Grosveld,et al.  An in vitro globin gene switching model based on differentiated embryonic stem cells. , 1990, Genes & development.

[19]  W. C. Forrester,et al.  A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. , 1990, Genes & development.

[20]  F. Grosveld,et al.  Detailed analysis of the site 3 region of the human beta‐globin dominant control region. , 1990, The EMBO journal.

[21]  F. Grosveld,et al.  The beta‐globin dominant control region: hypersensitive site 2. , 1990, The EMBO journal.

[22]  F. Grosveld,et al.  DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. , 1990, Nucleic acids research.

[23]  F. Grosveld,et al.  Definition of the minimal requirements within the human beta‐globin gene and the dominant control region for high level expression. , 1990, The EMBO journal.

[24]  M. Vidal,et al.  High-level, erythroid-specific expression of the human alpha-globin gene in transgenic mice and the production of human hemoglobin in murine erythrocytes. , 1989, Genes & development.

[25]  Y. Kan,et al.  Human beta-globin gene expression in transgenic mice is enhanced by a distant DNase I hypersensitive site. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[26]  N. Martin,et al.  A single erythroid-specific DNase I super-hypersensitive site activates high levels of human beta-globin gene expression in transgenic mice. , 1989, Genes & development.

[27]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[28]  W. C. Forrester,et al.  Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. , 1987, Nucleic acids research.

[29]  Holmquist Gp Role of replication time in the control of tissue-specific gene expression. , 1987 .

[30]  D. Tuan,et al.  The "beta-like-globin" gene domain in human erythroid cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Peter Fraser,et al.  Transcription complex stability and chromatin dynamics in vivo , 1995, Nature.

[32]  F. Grosveld,et al.  The regulation of human globin gene expression. , 1993, Bailliere's clinical haematology.

[33]  F. Grosveld,et al.  Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. , 1993, Genes & development.

[34]  C. Wilson,et al.  Position effects on eukaryotic gene expression. , 1990, Annual review of cell biology.

[35]  M. Vidal,et al.  The β-Globin Dominant Control Region , 1990 .

[36]  M. Vidal,et al.  A dominant control region from the human β-globin locus conferring integration site-independent gene expression , 1989, Nature.

[37]  D. Kioussis,et al.  β-Globin gene inactivation by DNA translocation in γβ-thalassaemi , 1983, Nature.

[38]  B John,et al.  Functional aspects of satellite DNA and heterochromatin. , 1979, International review of cytology.