The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells.

Mollicutes or mycoplasmas are a class of wall-less bacteria descended from low G + C% Gram-positive bacteria. Some are exceedingly small, about 0.2 micron in diameter, and are examples of the smallest free-living cells known. Their genomes are equally small; the smallest in Mycoplasma genitalium is sequenced and is 0.58 mb with 475 ORFs, compared with 4.639 mb and 4288 ORFs for Escherichia coli. Because of their size and apparently limited metabolic potential, Mollicutes are models for describing the minimal metabolism necessary to sustain independent life. Mollicutes have no cytochromes or the TCA cycle except for malate dehydrogenase activity. Some uniquely require cholesterol for growth, some require urea and some are anaerobic. They fix CO2 in anaplerotic or replenishing reactions. Some require pyrophosphate not ATP as an energy source for reactions, including the rate-limiting step of glycolysis: 6-phosphofructokinase. They scavenge for nucleic acid precursors and apparently do not synthesize pyrimidines or purines de novo. Some genera uniquely lack dUTPase activity and some species also lack uracil-DNA glycosylase. The absence of the latter two reactions that limit the incorporation of uracil or remove it from DNA may be related to the marked mutability of the Mollicutes and their tachytelic or rapid evolution. Approximately 150 cytoplasmic activities have been identified in these organisms, 225 to 250 are presumed to be present. About 100 of the core reactions are graphically linked in a metabolic map, including glycolysis, pentose phosphate pathway, arginine dihydrolase pathway, transamination, and purine, pyrimidine, and lipid metabolism. Reaction sequences or loci of particular importance are also described: phosphofructokinases, NADH oxidase, thioredoxin complex, deoxyribose-5-phosphate aldolase, and lactate, malate, and glutamate dehydrogenases. Enzymatic activities of the Mollicutes are grouped according to metabolic similarities that are taxonomically discriminating. The arrangements attempt to follow phylogenetic relationships. The relationships of putative gene assignments and enzymatic function in My. genitalium, My. pneumoniae, and My. capricolum subsp. capricolum are specially analyzed. The data are arranged in four tables. One associates gene annotations with congruent reports of the enzymatic activity in these same Mollicutes, and hence confirms the annotations. Another associates putative annotations with reports of the enzyme activity but from different Mollicutes. A third identifies the discrepancies represented by those enzymatic activities found in Mollicutes with sequenced genomes but without any similarly annotated ORF. This suggests that the gene sequence is significantly different from those already deposited in the databanks and putatively annotated with the same function. Another comparison lists those enzymatic activities that are both undetected in Mollicutes and not associated with any ORF. Evidence is presented supporting the theory that there are relatively small gene sequences that code for functional centers of multiple enzymatic activity. This property is seemingly advantageous for an organism with a small genome and perhaps under some coding restraint. The data suggest that a concept of "remnant" or "useless genes" or "useless enzymes" should be considered when examining the relationship of gene annotation and enzymatic function. It also suggests that genes in addition to representing what cells are doing or what they may do, may also identify what they once might have done and may never do again.

[1]  R. Lemcke,et al.  Isoenzymes in two species of Acholeplasma. , 1980, Journal of general microbiology.

[2]  M. Barile,et al.  Beware of mycoplasmas. , 1993, Trends in biotechnology.

[3]  P. Bieniasz,et al.  Mycoplasma fermentans in individuals seropositive and seronegative for HIV-1 , 1993, The Lancet.

[4]  Peer Bork,et al.  Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology , 1995, Molecular microbiology.

[5]  G Zeng,et al.  Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain , 1996, Journal of bacteriology.

[6]  P. Vos,et al.  Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria , 1990 .

[7]  L. Montagnier,et al.  Development of a selective and sensitive polymerase chain reaction assay for the detection of Mycoplasma pirum. , 1993, FEMS microbiology letters.

[8]  R. Davis,et al.  Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification , 1994, Journal of bacteriology.

[9]  J. Silvius,et al.  Lipid compositional manipulation in Acholeplasma laidlawii B. Effect of exogenous fatty acids on fatty acid composition and cell growth when endogenous fatty acid production is inhibited. , 1978, Canadian journal of biochemistry.

[10]  R. Taylor,et al.  Diversity of energy-yielding substrates and metabolism in avian mycoplasmas. , 1996, Veterinary microbiology.

[11]  R. Schimke,et al.  The generation of energy by the arginine dihydrolase pathway in Mycoplasma hominis 07. , 1966, The Journal of biological chemistry.

[12]  V. Simonsen,et al.  Electrophoretic Analysis of Isoenzymes of Mycoplasma Species , 1983, Acta Veterinaria Scandinavica.

[13]  M. Takiguchi,et al.  A novel ornithine transcarbamylase present in mycoplasma-infected myeloma cells. , 1993, Enzyme & protein.

[14]  P. Model,et al.  Analysis of the proteins and cis-acting elements regulating the stress-induced phage shock protein operon. , 1995, Nucleic acids research.

[15]  J. Pollack,et al.  Utilization of [1-14C]Acetate in the Synthesis of Lipids by Acholeplasmas , 1974 .

[16]  W. Bodmer,et al.  Uptake and Incorporation of Thymine, Thymidine, Uracil, Uridine, and 5-Fluorouracil into the Nucleic Acids of Bacillus subtilis , 1965, Journal of bacteriology.

[17]  M. Barile,et al.  Effect of Cerulenin on Growth and Lipid Metabolism of Mycoplasmas , 1976, Antimicrobial Agents and Chemotherapy.

[18]  P. Zhu,et al.  Sequence and organization of genes encoding enzymes involved in pyruvate metabolism in mycoplasma capricolum , 1996, Protein science : a publication of the Protein Society.

[19]  L. D. Olson,et al.  Arginine utilization by Mycoplasma fermentans is not regulated by glucose metabolism: a 13C-NMR study. , 1993, FEMS microbiology letters.

[20]  Hills Gm Ammonia production by pathogenic bacteria. , 1940 .

[21]  J. Bové,et al.  Genetic and serologic relatedness between Mycoplasma fermentans strains and a mycoplasma recently identified in tissues of AIDS and non-AIDS patients. , 1990, Research in virology.

[22]  Pollack Jd Enzyme analysis. The rationale and use of enzyme assays in assigning function to gene nucleotide sequences and the procedures for the assay of three enzymatic functions conserved in mollicutes. , 1998 .

[23]  H. Neimark,et al.  Properties of a Fructose-1, 6-Diphosphate-Activated Lactate Dehydrogenase from Acholeplasma laidlawii Type A , 1973, Journal of bacteriology.

[24]  L. R. Finch,et al.  A physical map for Mycoplasma capricolum Cal. kid with loci for all known tRNA species. , 1991, Nucleic acids research.

[25]  S. Rottem,et al.  The synthesis of long-chain fatty acids by a cell-free system from Mycoplasma laidlawii A. , 1970, Biochemistry.

[26]  P. Wallbrandt,et al.  Membrane protein acylation. Preference for exogenous myristic acid or endogenous saturated chains in Acholeplasma laidlawii. , 1992, European journal of biochemistry.

[27]  A. Dahlqvist,et al.  The enzymatic synthesis of membrane glucolipids in Acholeplasma laidlawii. , 1992, Biochimica et biophysica acta.

[28]  K. Wise,et al.  Phenotypic switching in mycoplasmas: phase variation of diverse surface lipoproteins. , 1990, Science.

[29]  I. Robinson,et al.  Acetate kinase activity in mycoplasmas , 1981, Journal of bacteriology.

[30]  C. Chevalier,et al.  Organization and nucleotide sequences of the Spiroplasma citri genes for ribosomal protein S2, elongation factor Ts, spiralin, phosphofructokinase, pyruvate kinase, and an unidentified protein , 1990, Journal of bacteriology.

[31]  R. McElhaney,et al.  Membrane Lipid Biosynthesis in Acholeplasma laidlawii B: Incorporation of Exogenous Fatty Acids into Membrane Glyco- and Phospholipids by Growing Cells , 1977, Journal of bacteriology.

[32]  N. D. de Silva,et al.  Localization of endogenous activity of phospholipases A and C in Ureaplasma urealyticum , 1991, Journal of clinical microbiology.

[33]  A. Liss,et al.  Enzymological features of aromatic amino acid biosynthesis reflect the phylogeny of mycoplasmas. , 1987, Journal of general microbiology.

[34]  R. Miles Catabolism in mollicutes. , 1992, Journal of general microbiology.

[35]  M. Miyata,et al.  Physical mapping of the Mycoplasma capricolum genome. , 1991, FEMS microbiology letters.

[36]  J. Davis,et al.  Purine and Pyrimidine Metabolism in Mollicutes Species , 1988 .

[37]  J. Pollack,et al.  Malate/lactate dehydrogenase in mollicutes: evidence for a multienzyme protein. , 1997, Gene.

[38]  J. Hugenholtz,et al.  Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum , 1989, Journal of bacteriology.

[39]  M. Hamet,et al.  Enzymatic activities on purine pyrimidine metabolism in nine mycoplasma species contaminating cell cultures. , 1980, Clinica chimica acta; international journal of clinical chemistry.

[40]  C. S. Millard,et al.  Stringency of substrate specificity of Escherichia coli malate dehydrogenase. , 1995, Archives of biochemistry and biophysics.

[41]  T. Kaneda,et al.  Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. , 1991, Microbiological reviews.

[42]  B. Roy,et al.  Composition and enzyme activities of Spiroplasma citri membranes , 1977, Journal of bacteriology.

[43]  S. Rottem,et al.  Unusual positional distribution of fatty acids in phosphatidylglycerol of sterol‐requiring mycoplasmas , 1979, FEBS letters.

[44]  S. Nyström,et al.  Isoprenoid modification of proteins distinct from membrane acyl proteins in the prokaryote Acholeplasma laidlawii. , 1992, Biochimica et biophysica acta.

[45]  B. Horecker PATHWAYS OF CARBOHYDRATE METABOLISM AND THEIR PHYSIOLOGICAL SIGNIFICANCE. , 1965, Journal of chemical education.

[46]  H. Neimark,et al.  Origins of the mycoplasmas: sterol-nonrequiring mycoplasmas evolved from streptococci , 1982, Journal of bacteriology.

[47]  R. L. Booth,et al.  Respiration-associated components of Mollicutes , 1981, Journal of bacteriology.

[48]  M. Wilkins,et al.  Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium , 1995, Electrophoresis.

[49]  P. F. Smith,et al.  Phospholipids and Glycolipids of Sterol-requiring Mycoplasma , 1967, Journal of bacteriology.

[50]  W. Moore,et al.  Fermentation patterns of some Clostridium species1 , 1966 .

[51]  R. McIvor,et al.  Differences in incorporation of nucleic acid bases and nucleosides by various Mycoplasma and Acholeplasma species , 1978, Journal of bacteriology.

[52]  S. Razin Nucleic acid precursor requirements of Mycoplasma laidlawii. , 1962, Journal of general microbiology.

[53]  J. Pollack,et al.  PPi-dependent phosphofructotransferase (phosphofructokinase) activity in the mollicutes (mycoplasma) Acholeplasma laidlawii , 1986, Journal of bacteriology.

[54]  Amended Data on Arginine Utilization by Spiroplasma Species , 1996 .

[55]  G. Kenny,et al.  Detection of End Products of the Arginine Dihydrolase Pathway in Both Fermentative and Nonfermentative Mycoplasma Species by Thin-Layer Chromatography , 1986 .

[56]  Ann Saada,et al.  Glycosidase activities of mycoplasmas. , 1990, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[57]  J. Pollack,et al.  Metabolism of Mollicutes: the Embden—Meyerhof—Parnas Pathway and the Hexose Monophosphate Shunt , 1989 .

[58]  F. Minion,et al.  D5 - Nucleolytic Activities of Mycloplasmas , 1995 .

[59]  A. Abdelal Arginine catabolism by microorganisms. , 1979, Annual review of microbiology.

[60]  Hubert Bahl,et al.  Introduction to the Physiology and Biochemistry of the Genus Clostridium , 1989 .

[61]  R. McElhaney,et al.  Metabolic Turnover of the Polar Lipids of Mycoplasma laidlawii Strain B , 1970, Journal of bacteriology.

[62]  J. Pollack Localization of Reduced Nicotinamide Adenine Dinucleotide Oxidase Activity in Acholeplasma and Mycoplasma Species , 1975 .

[63]  G. B. Nadkarni,et al.  Regulation of the arginine dihydrolase pathway in Clostridium sporogenes , 1977, Journal of bacteriology.

[64]  R. Taylor,et al.  Alternatives to arginine as energy sources for the non-fermentative Mycoplasma gallinarum. , 1994, FEMS microbiology letters.

[65]  J. Stern,et al.  Glutamate biosynthesis in anaerobic bacteria. I. The citrate pathways of glutamate synthesis in Clostridium kluyveri. , 1966, Biochemistry.

[66]  Unique monocistronic operon (ptsH) in Mycoplasma capricolum encoding the phosphocarrier protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system. Cloning, sequencing, and characterization of ptsH. , 1993, The Journal of biological chemistry.

[67]  C R Woese,et al.  Phylogenetic analysis of the mycoplasmas. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Paul F. Smith AMINO ACID METABOLISM OF PPLO * , 1960, Annals of the New York Academy of Sciences.

[69]  L. Gottfried,et al.  Amino Acid Transport in Mycoplasma , 1968, Journal of bacteriology.

[70]  E. Freundt C7 – CULTURE MEDIA FOR CLASSIC MYCOPLASMAS , 1983 .

[71]  J. Pollack,et al.  Distinctions in Mollicutes Purine Metabolism: Pyrophosphate-Dependent Nucleoside Kinase and Dependence on Guanylate Salvage , 1985 .

[72]  J. Bové,et al.  B6 – PLASMID AND VIRAL VECTORS FOR GENE CLONING AND EXPRESSION IN SPIROPLASMA CITRI , 1995 .

[73]  S. Rottem,et al.  [20] Transport in mycoplasmas , 1986 .

[74]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[75]  Y. Inagaki,et al.  Lack of peptide-release activity responding to codon UGA in Mycoplasma capricolum. , 1993, Nucleic acids research.

[76]  W. Trommer,et al.  Structure-function relationship in the allosteric L-lactate dehydrogenases from Lactobacillus casei and Lactobacillus curvatus. , 1982, European journal of biochemistry.

[77]  K. Hackett,et al.  Why are there so many species of mollicutes? An essay on prokaryote diversity , 1989 .

[78]  R. Thauer,et al.  Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. , 1973, Biochimica et biophysica acta.

[79]  H. Sahm,et al.  Isoprenoid biosynthesis in bacteria: two different pathways? , 1993, FEMS Microbiology Letters.

[80]  T. Meyer,et al.  Cytochromes C2 sequence variation among the recognised species of purple nonsulphur photosynthetic bacteria , 1979, Nature.

[81]  W. Mayberry,et al.  Lipids of a T Strain of Mycoplasma , 1972, Journal of bacteriology.

[82]  H. Neimark MOLECULAR EVOLUTIONARY STUDIES ON MYCOPLASMAS AND ACHOLEPLASMAS * , 1973 .

[83]  L. Montagnier,et al.  Identification of Mycoplasma pirum genes involved in the salvage pathways for nucleosides , 1993, Journal of bacteriology.

[84]  P. de Vos,et al.  Polyphasic Taxonomy , a Consensus Approach to Bacterial Systematics , 1996 .

[85]  P. F. Smith,et al.  Comparative Biosynthesis of Mevalonic Acid by Mycoplasma , 1965, Journal of bacteriology.

[86]  J. Pollack,et al.  Synthesis of deoxyribomononucleotides in Mollicutes: dependence on deoxyribose-1-phosphate and PPi , 1987, Journal of bacteriology.

[87]  William Noble Grundy,et al.  ParaMEME: a parallel implementation and a web interface for a DNA and protein motif discovery tool , 1996, Comput. Appl. Biosci..

[88]  J. Silvius,et al.  Membrane lipid biosynthesis in Acholeplasma laidlawii B. Investigations into the in vivo regulation of the quantity and hydrocarbon chain lengths of de novo biosynthesized fatty aicds in response to exogenously supplied fatty acids. , 1977, Archives of biochemistry and biophysics.

[89]  N. Romano,et al.  Energy production in Ureaplasma urealyticum. , 1986, Pediatric infectious disease.

[90]  L. Pauling,et al.  Molecules as documents of evolutionary history. , 1965, Journal of theoretical biology.

[91]  P. Carbon,et al.  A protein binds the selenocysteine insertion element in the 3'-UTR of mammalian selenoprotein mRNAs. , 1996, Nucleic acids research.

[92]  J A Lake,et al.  Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. , 1992, Science.

[93]  G. Delisle Multiple Forms of Urease in Cytoplasmic Fractions of Ureaplasma urealyticum , 1977, Journal of bacteriology.

[94]  G. Kenny,et al.  Differences in Arginine Requirement for Growth Among Arginine-Utilizing Mycoplasma Species , 1974, Journal of bacteriology.

[95]  P. F. Smith,et al.  D- and L-Alanylphosphatidylglycerols from Mycoplasma laidlawii, strain B. , 1969, Biochemistry.

[96]  N Shaw,et al.  Lipid composition as a guide to the classification of bacteria. , 1974, Advances in applied microbiology.

[97]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[98]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[99]  J. Silvius,et al.  Membrane lipid biosynthesis in Acholeplasma laidlawii B. Relationship between fatty acid structure and the positional distribution of esterified fatty acids in phospho- and glycolipids from growing cells. , 1977, Archives of biochemistry and biophysics.

[100]  L. R. Finch,et al.  Pathways of pyrimidine deoxyribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides , 1983, Journal of bacteriology.

[101]  R. Himmelreich,et al.  The thioredoxin reductase system of mycoplasmas. , 1997, Microbiology.

[102]  S. Razin,et al.  Distribution of a Phosphoenolpyruvate-Dependent Sugar Phosphotransferase System in Mycoplasmas , 1973 .

[103]  P. F. Smith Biosynthesis of Glucosyl Diglycerides by Mycoplasma laidlawii Strain B , 1969, Journal of bacteriology.

[104]  G. Gottschalk,et al.  2-Keto-3-Deoxygluconate, an Intermediate in the Fermentation of Gluconate by Clostridia , 1971, Journal of bacteriology.

[105]  P. F. Smith CONVERSION OF CITRULLINE TO ORNITHINE BY PLEUROPNEUMONIALIKE ORGANISMS , 1957, Journal of bacteriology.

[106]  A. Haldimann,et al.  DNA sequence determination and biochemical analysis of the immunogenic protein P36, the lactate dehydrogenase (LDH) of Mycoplasma hyopneumoniae. , 1993, Journal of general microbiology.

[107]  J. Pollack,et al.  Synthesis of Saturated Long Chain Fatty Acids from Sodium Acetate-1-C14 by Mycoplasma , 1967, Journal of bacteriology.

[108]  T. Watanabe,et al.  Cloning and sequence analysis of the aminopeptidase My gene from Mycoplasma salivarium. , 1995, FEMS microbiology letters.

[109]  P. Hanawalt,et al.  Macromolecular Synthesis and Thymineless Death in Mycoplasma laidlawii B , 1968, Journal of bacteriology.

[110]  K. Shibata,et al.  Acid phosphatase purified from Mycoplasma fermentans has protein tyrosine phosphatase-like activity , 1994, Infection and immunity.

[111]  A. Dahlqvist,et al.  Lipid Dependence and Basic Kinetics of the Purified 1,2-Diacylglycerol 3-Glucosyltransferase from Membranes of Acholeplasma laidlawii* , 1997, The Journal of Biological Chemistry.

[112]  Radhey S. Gupta Evolution of the chaperonin families (HSP60, HSP 10 and TCP‐1) of proteins and the origin of eukaryotic cells , 1995, Molecular microbiology.

[113]  Morowitz Hj,et al.  The completeness of molecular biology. , 1984 .

[114]  V. P. Cirillo,et al.  Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: glucose-negative mutant and regulation of intracellular cyclic AMP , 1978, Journal of bacteriology.

[115]  J. Petzel Physiology of the wall-less Anaeroplasmataceae (Class Mollicutes) and related walled bacteria , 1989 .

[116]  C. Hiruki,et al.  Detection by PCR and differentiation by restriction fragment length polymorphism of Acholeplasma, Spiroplasma, Mycoplasma, and Ureaplasma, based upon 16S rRNA genes. , 1992, PCR methods and applications.

[117]  A. Rodwell NUTRITION AND METABOLISM OF MYCOPLASMA MYCOIDES VAR. MYCOIDES , 1960, Annals of the New York Academy of Sciences.

[118]  C. Lange,et al.  Pulse-field electrophoresis indicates full-length Mycoplasma chromosomes range widely in size. , 1990, Nucleic acids research.

[119]  Philippe Dessen,et al.  A rapid access motif database (RAMdb) with a search algorithm for the retrieval patterns in nucleic acids or protein databanks , 1995, Comput. Appl. Biosci..

[120]  H. Neimark 2 – PHYLOGENETIC RELATIONSHIPS BETWEEN MYCOPLASMAS AND OTHER PROKARYOTES , 1979 .

[121]  P. F. Smith THE CAROTENOID PIGMENTS OF MYCOPLASMA. , 1963, Journal of general microbiology.

[122]  J. Neuhard,et al.  Pyrimidine metabolism in microorganisms. , 1970, Bacteriological reviews.

[123]  J. V. Van Etten,et al.  A phylogenetic analysis of the mycoplasmas: basis for their classification , 1989, Journal of bacteriology.

[124]  B. Sears,et al.  Phylogenetic relationships among members of the class Mollicutes deduced from rps3 gene sequences. , 1994, International journal of systematic bacteriology.

[125]  A. Rodwell C11 – DEFINED AND PARTLY DEFINED MEDIA , 1983 .

[126]  G. Mcgarrity,et al.  Activities of oxidative enzymes in mycoplasmas , 1987, Journal of bacteriology.

[127]  J. Romijn,et al.  Some studies on the fatty acid composition of total lipids and phosphatidylglycerol from Acholeplasma laidlawii B and their relation to the premeability of intact cells of this organism. , 1972, Biochimica et biophysica acta.

[128]  O. Kandler,et al.  International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. , 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[129]  V. Tryon,et al.  Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity , 1984, Journal of bacteriology.

[130]  J. Pollack Mycoplasma genes: a case for reflective annotation. , 1997, Trends in microbiology.

[131]  S Karlin,et al.  Bacterial classifications derived from recA protein sequence comparisons , 1995, Journal of bacteriology.

[132]  J. Pollack,et al.  Isolation, Characterization, and Immunogenicity of Mycoplasma pneumoniae Membranes , 1970, Infection and immunity.

[133]  L. R. Finch,et al.  Enzymes of Pyrimidine Metabolism in Mycoplasma mycoides subsp. mycoides , 1978, Journal of bacteriology.

[134]  J. Bradbury Rapid biochemical tests for characterization of the Mycoplasmatales , 1977, Journal of clinical microbiology.

[135]  S. Rottem,et al.  Membrane Lipids of Mycoplasma hominis , 1973, Journal of bacteriology.

[136]  A. Driessen,et al.  Bioenergetics and solute transport in lactococci. , 1989, Critical reviews in microbiology.

[137]  H. Bode,et al.  Size and structure of the Mycoplasma hominis H39 chromosome. , 1967, Journal of molecular biology.

[138]  J. Kotzé Glycolytic and related enzymes in clostridial classification. , 1969, Applied microbiology.

[139]  H. Hilbert,et al.  Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. , 1997, Nucleic acids research.

[140]  P. Hu,et al.  Nucleotide sequence of the deoC gene of Mycoplasma pneumoniae. , 1989, Nucleic acids research.

[141]  B. Wadher,et al.  A mutant of Mycoplasma mycoides subsp. mycoides lacking the H2O2- producing enzyme L-alpha-glycerophosphate oxidase. , 1990, FEMS microbiology letters.

[142]  P. Plackett THE SYNTHESIS OF POLAR LIPIDS BY MYCOPLASMA , 1967, Annals of the New York Academy of Sciences.

[143]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[144]  J. Pollack,et al.  Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. , 1988, Journal of general microbiology.

[145]  S. Razin Molecular biology and genetics of mycoplasmas (Mollicutes) , 1985, Microbiological reviews.

[146]  V. P. Cirillo Transport systems in mycoplasmas. , 1993, Sub-cellular biochemistry.

[147]  D. Button,et al.  Viability and Isolation of Marine Bacteria by Dilution Culture: Theory, Procedures, and Initial Results , 1993, Applied and environmental microbiology.

[148]  T. Watanabe,et al.  Purification and characterization of an arginine-specific carboxypeptidase from Mycoplasma salivarium , 1988, Journal of bacteriology.

[149]  W. Mayberry,et al.  Lipids of a Sterol-Nonrequiring Mycoplasma , 1970, Journal of bacteriology.

[150]  J. Davis,et al.  Reduction of benzyl viologen distinguishes genera of the class Mollicutes. , 1996, International Journal of Systematic Bacteriology.

[151]  S. Osawa,et al.  The organization and evolution of transfer RNA genes in Mycoplasma capricolum. , 1990, Nucleic acids research.

[152]  Eugene V. Koonin,et al.  A simple tool to search for sequence motifs that are conserved in BLAST outputs , 1994, Comput. Appl. Biosci..

[153]  N. Kaplan,et al.  Chemical characterization of D-lactate dehydrogenase from Escherichia coli B. , 1968, The Journal of biological chemistry.

[154]  J. Pollack,et al.  Metabolism of members of the Spiroplasmataceae , 1989 .

[155]  S. Rottem,et al.  Adenosine Triphosphatase Activity of Mycoplasma Membranes , 1966, Journal of bacteriology.

[156]  R. Jensen,et al.  Biochemical pathways in prokaryotes can be traced backward through evolutionary time. , 1985, Molecular biology and evolution.

[157]  J. Ley ON THE UNITY OF BACTERIAL RIBOSOMES. , 1964 .

[158]  A. Rodwell,et al.  The breakdown of carbohydrates by Asterococcus mycoides, the organism of bovine pleuropneumonia. , 1954, Australian journal of biological sciences.

[159]  M. J. Pickett,et al.  PRODUCTS OF GLUCOSE METABOLISM BY PLEUROPNEUMONIALIKE ORGANISMS * , 1960, Annals of the New York Academy of Sciences.

[160]  R. T. Walker,et al.  Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[161]  J. Pollack,et al.  Properties of the nucleases of mollicutes , 1982, Journal of bacteriology.

[162]  L. R. Finch,et al.  Uptake and utilization of deoxynucleoside 5'-monophosphates by Mycoplasma mycoides subsp. mycoides , 1984, Journal of bacteriology.

[163]  G. Kenny,et al.  Differences in accumulation of radiolabeled amino acids and polyamines by Mycoplasma and Acholeplasma species. , 1990, International journal of systematic bacteriology.

[164]  F. Lipmann,et al.  Projecting Backward from the Present Stage of Evolution of Biosynthesis , 1965 .

[165]  G. Kenny,et al.  Role of arginine deiminase in growth of Mycoplasma hominis , 1976, Journal of bacteriology.

[166]  T. Kaneda Fatty acids of the genus Bacillus: an example of branched-chain preference. , 1977, Bacteriological reviews.

[167]  L. R. Finch,et al.  Enzymes of intermediary carbohydrate metabolism in Ureaplasma urealyticum and Mycoplasma mycoides subsp. mycoides. , 1985, Journal of general microbiology.

[168]  S. Razin,et al.  Possible role of acetate kinase in atp generation in Mycoplasma hominis and Acholeplasma laidlawii , 1978 .

[169]  Paul F. Smith,et al.  Conversion of Mevalonic Acid to γ,γ-Dimethylallyl Pyrophosphate by Mycoplasma , 1966 .

[170]  C Ouzounis,et al.  The emergence of major cellular processes in evolution , 1996, FEBS letters.

[171]  R. Reinards,et al.  Purification and Characterization of NADH Oxidase from Membranes of Acholeplasma laidlawii, a Copper-Containing Iron-Sulphur Flavoprotein. , 1981 .

[172]  R. McElhaney,et al.  The relationship between fatty acid structure and the positional distribution of esterified fatty acids in phosphatidyl glycerol from Mycoplasma laidlawii B. , 1970, Biochimica et biophysica acta.

[173]  T. Watanabe,et al.  Phosphatase activity as a criterion for differentiation of oral mycoplasmas , 1986, Journal of clinical microbiology.

[174]  W. Gray,et al.  Peptidase activity in the membranes of Mycoplasma laidlawii. , 1971, Biochemical and biophysical research communications.

[175]  Paul F. Smith 1 – Origins of Mycoplasmas , 1971 .

[176]  J Brosius,et al.  More haemophilus and Mycoplasma genes. , 1996, Science.

[177]  A. Rodwell THE NUTRITION AND METABOLISM OF MYCOPLASMA: PROGRESS AND PROBLEMS , 1967, Annals of the New York Academy of Sciences.

[178]  D. G. Smith,et al.  Hydrolysis of urea by Ureaplasma urealyticum generates a transmembrane potential with resultant ATP synthesis , 1993, Journal of bacteriology.

[179]  J. Pollack,et al.  The anaplerotic phosphoenolpyruvate carboxylase of the tricarboxylic acid cycle deficient Acholeplasma laidlawii B-PG9. , 1989, Journal of general microbiology.

[180]  S. Rottem,et al.  Lipid interconversions in aging Mycoplasma capricolum cultures , 1986, Journal of bacteriology.

[181]  P. Plackett,et al.  Glycerolipid biosynthesis by mycoplasma strain Y , 1970 .

[182]  H. Margalit,et al.  Nucleotide sequence, organization and characterization of the atp genes and the encoded subunits of Mycoplasma gallisepticum ATPase. , 1992, The Biochemical journal.

[183]  D. Stock,et al.  Thymidine metabolism in Mycoplasma hominis. , 1971, Journal of general microbiology.

[184]  J. Pollack,et al.  Adenylate energy charge in Acholeplasma laidlawii , 1981, Journal of bacteriology.

[185]  P. F. Smith Biosynthesis of Cholesteryl Glucoside by Mycoplasma gallinarum , 1971, Journal of bacteriology.

[186]  L. R. Finch,et al.  Pathways of Nucleotide Biosynthesis in Mycoplasma mycoides subsp. mycoides , 1977, Journal of bacteriology.

[187]  The stereospecificities of seven dehydrogenases from Acholeplasma laidlawii. The simplest historical model that explains dehydrogenase stereospecificity. , 1990, The Journal of biological chemistry.

[188]  J. Russell,et al.  Energetics of bacterial growth: balance of anabolic and catabolic reactions. , 1995, Microbiological reviews.

[189]  M. Claesson,et al.  Inhibitory Effect of Mycoplasma‐Released Arginase , 1990, Scandinavian journal of immunology.

[190]  Paul F. Smith 9 – THE COMPOSITION OF MEMBRANE LIPIDS AND LIPOPOLYSACCHARIDES , 1979 .

[191]  K. Wise,et al.  Localized frameshift mutation generates selective, high-frequency phase variation of a surface lipoprotein encoded by a mycoplasma ABC transporter operon , 1997, Journal of bacteriology.

[192]  G. Masover,et al.  17 – SPECIAL FEATURES OF UREAPLASMAS , 1979 .

[193]  D. W. Young,et al.  Glutamate Dehydrogenase from Mycoplasma laidlawii , 1972, Journal of bacteriology.

[194]  GTPase activity of a bacterial SRP-like complex. , 1993, Nucleic acids research.

[195]  G. Kenny,et al.  Distinctive Antigenic Specificities of Adenosine Triphosphatases and Reduced Nicotinamide Adenine Dinucleotide Dehydrogenases as Means for Classification of the Order Mycoplasmatales , 1983 .

[196]  T. Fisher,et al.  Acetokinase reaction in several pleuropneumonia-like organisms. , 1962, Biochemical and biophysical research communications.

[197]  B. Sears,et al.  B2 – ISOLATION OF MYCOPLASMA-LIKE ORGANISM DNA FROM PLANT AND INSECT HOSTS , 1995 .

[198]  S. Rottem,et al.  Acyl Carrier Protein in Mycoplasmas , 1973, Journal of bacteriology.

[199]  H. Sahm,et al.  Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. , 1993, The Biochemical journal.

[200]  J. Pollack,et al.  Comparative metabolism of Mesoplasma, Entomoplasma, Mycoplasma, and Acholeplasma. , 1996, International journal of systematic bacteriology.

[201]  R. Townsend Arginine metabolism by spiroplasma citri. , 1976, Journal of general microbiology.

[202]  P. Hartman,et al.  Aromatic Amino Acid Biosynthesis and Carbohydrate Catabolism in Strictly Anaerobic Mollicutes (Anaeroplasma spp.) , 1990 .

[203]  A. Greenberg,et al.  Changes in composition, biosynthesis, and physical state of membrane lipids occurring upon aging of Mycoplasma hominis cultures , 1975, Journal of bacteriology.

[204]  M. Tourtellotte,et al.  PHYSIOLOGICAL AND SEROLOGIC COMPARISONS OF PPLO FROM VARIOUS SOURCES * , 1960, Annals of the New York Academy of Sciences.

[205]  A. Beezer,et al.  Kinetics of utilization of organic substrates by Mycoplasma mycoides subsp. mycoides in a salts solution: a flow-microcalorimetric study. , 1985, Journal of general microbiology.

[206]  S. Rottem,et al.  Uptake and Utilization of Acetate by Mycoplasma , 1967 .

[207]  W. Russell,et al.  Urea-hydrolysis-dependent citrulline synthesis by Ureaplasma urealyticum. , 1992, FEMS microbiology letters.

[208]  C. Rock,et al.  Regulation of fatty acid biosynthesis in Escherichia coli. , 1993, Microbiological reviews.

[209]  K. Dybvig,et al.  Molecular biology of mycoplasmas. , 1996, Annual review of microbiology.

[210]  H. Alter,et al.  Identification of Mycoplasma incognitus infection in patients with AIDS: an immunohistochemical, in situ hybridization and ultrastructural study. , 1989, The American journal of tropical medicine and hygiene.

[211]  A F Angulo,et al.  Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification , 1992, Applied and environmental microbiology.

[212]  E. Stackebrandt,et al.  Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. , 1994, International journal of systematic bacteriology.

[213]  K. Jyssum,et al.  Metabolism of pyrimidine bases and nucleosides in Neisseria meningitidis , 1979, Journal of bacteriology.

[214]  C. Smart,et al.  E6 – PHYLOGENETIC CLASSIFICATION OF PLANT PATHOGENIC MYCOPLASMA-LIKE ORGANISMS OR PHYTOPLASMAS , 1995 .

[215]  H. Goldfine Lipids of Prokaryotes–Structure and Distribution , 1982 .

[216]  E. Koonin,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[217]  S. Karlin,et al.  Which bacterium is the ancestor of the animal mitochondrial genome? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[218]  J. Faber,et al.  Standardized bacteriologic techniques for the characterization of Mycoplasma species1, 2 , 1970 .

[219]  J. Mudd,et al.  Lipid composition and lipid metabolism of Spiroplasma citri , 1976, Journal of bacteriology.

[220]  J. Pollack,et al.  Pyrimidine deoxyribonucleotide metabolism in Acholeplasma laidlawii B-PG9 , 1985, Journal of bacteriology.

[221]  R. Taylor,et al.  Oxygen uptake and H2O2 production by fermentative Mycoplasma spp. , 1991, Journal of medical microbiology.

[222]  O. Vinther,et al.  Aminopeptidase activity of Ureaplasma urealyticum. , 2009, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology.

[223]  J. Thompson Regulation of sugar transport and metabolism in lactic acid bacteria , 1987 .

[224]  L. R. Finch,et al.  Enzymes of pyrimidine deoxyribonucleotide metabolism in Mycoplasma mycoides subsp. mycoides , 1983, Journal of Bacteriology.

[225]  J. Petzel,et al.  Pyrophosphate-Dependent Enzymes in Walled Bacteria Phylogenetically Related to the Wall-Less Bacteria of the Class Mollicutes , 1989 .

[226]  R. White,et al.  Early steps of isoprenoid biosynthesis in Escherichia coli. , 1991, The Biochemical journal.

[227]  P. F. Smith Nature of Unsaponifiable Lipids of a Mycoplasma Strain Grown with Isopentenyl Pyrophosphate as a Substitute for Sterol , 1968, Journal of bacteriology.

[228]  R. Lemcke,et al.  Occurrence and Properties of Lactic Dehydrogenases of Fermentative Mycoplasmas , 1972, Journal of bacteriology.

[229]  S. O’Brien,et al.  Analysis of multiple isoenzyme expression among twenty-two species of Mycoplasma and Acholeplasma , 1981, Journal of bacteriology.

[230]  R. Schimke,et al.  ARGININE METABOLISM IN PLEUROPNEUMONIA-LIKE ORGANISMS ISOLATED FROM MAMMALIAN CELL CULTURE , 1963, Journal of bacteriology.

[231]  T. Langworthy,et al.  Existence of carotenoids in Acholeplasma axanthum , 1979, Journal of bacteriology.

[232]  M. Klömkes,et al.  Purification and properties of an FAD-containing NADH oxidase from Mycoplasma capricolum. , 1985, Biological chemistry Hoppe-Seyler.

[233]  J. Tully,et al.  Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. , 1977, Science.

[234]  L. R. Finch,et al.  Human ureaplasmas show diverse genome sizes by pulsed-field electrophoresis. , 1990, Nucleic acids research.

[235]  S. Rottem,et al.  Membrane lipids of Mycoplasma gallisepticum: a disaturated phosphatidylcholine and a phosphatidylglycerol with an unusual positional distribution of fatty acids. , 1979, Biochemistry.

[236]  J. Pollack,et al.  Localization of Enzymes in Mycoplasma , 1965, Journal of bacteriology.

[237]  J. Pollack,et al.  Acholeplasma laidlawii B-PG9 adenine-specific purine nucleoside phosphorylase that accepts ribose-1-phosphate, deoxyribose-1-phosphate, and xylose-1-phosphate , 1988, Journal of bacteriology.

[238]  S. Rottem,et al.  Spiroplasma membrane lipids , 1985, Journal of bacteriology.

[239]  J. Pollack NOTE: Differentiation of Mycoplasma and Acholeplasma , 1978 .

[240]  C. Linker,et al.  Characterization and solubilization of the membrane-bound ATPase of Mycoplasma gallisepticum , 1985, Journal of bacteriology.

[241]  S. Osawa,et al.  Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. , 1989, Journal of molecular biology.

[242]  P. Wallbrandt,et al.  Identification and analysis of the genes coding for the putative pyruvate dehydrogenase enzyme complex in Acholeplasma laidlawii , 1992, Journal of bacteriology.

[243]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[244]  H. Neimark Evolution of mycoplasmas and genome losses. , 1983, The Yale journal of biology and medicine.

[245]  P. Vandemark,et al.  Nature of Butyrate Oxidation by Mycoplasma hominis , 1965, Journal of bacteriology.

[246]  S. Rottem,et al.  D7 – PHOSPHOLIPASE ACTIVITY IN MYCOPLASMAS , 1995 .

[247]  J. Bové,et al.  A test for measuring growth responses of mollicutes to serum and polyoxyethylene sorbitan. , 1993, International journal of systematic bacteriology.

[248]  C. Hutchison,et al.  Genetic map of the Mycoplasma genitalium chromosome , 1995, Journal of bacteriology.

[249]  Pollack Jd,et al.  Synthesis of adenylate nucleotides by Mollicutes (mycoplasmas). , 1983 .

[250]  M R Wilkins,et al.  Cross‐species identification of proteins separated by two‐dimensional gel electrophoresis using matrix‐assisted laser desorption ionisation/time‐of‐flight mass spectrometry and amino acid composition , 1995, Electrophoresis.

[251]  I. Robinson,et al.  Plasmalogen composition of Anaeroplasma , 1975, Journal of bacteriology.

[252]  R. Schimke,et al.  Presence of the Arginine Dihydrolase Pathway in Mycoplasma , 1966, Journal of bacteriology.

[253]  Lechevalier Mp Lipids in Bacterial Taxonomy - A Taxonomist's View , 1977 .

[254]  G. Habermehl,et al.  Evidence for superoxide dismutase and catalase in mollicutes and release of reactive oxygen species. , 1990, Archives of biochemistry and biophysics.

[255]  D. C. Krause,et al.  Phosphorylation of Mycoplasma pneumoniae cytadherence-accessory proteins in cell extracts , 1995, Journal of bacteriology.

[256]  P. F. Smith CHOLESTEROL ESTERASE ACTIVITY OF PLEUROPNEUMONIALIKE ORGANISMS , 1959, Journal of bacteriology.

[257]  F. Minion,et al.  Enhanced readthrough of opal (UGA) stop codons and production of Mycoplasma pneumoniae P1 epitopes in Escherichia coli. , 1993, Gene.

[258]  J. Pollack,et al.  Pyrimidine Deoxyribonucleotide Metabolism in Members of the Class Mollicutes , 1985 .

[259]  R. Lewis,et al.  Purification and characterization of the membrane (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B. , 1983, Biochimica et Biophysica Acta.

[260]  H. Hilbert,et al.  Sequence analysis of 56 kb from the genome of the bacterium Mycoplasma pneumoniae comprising the dnaA region, the atp operon and a cluster of ribosomal protein genes. , 1996, Nucleic acids research.

[261]  K. Sugimura,et al.  Polymorphism in genes for the enzyme arginine deiminase among Mycoplasma species , 1993, Infection and immunity.

[262]  S. Misawa,et al.  High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. , 1994, Journal of biotechnology.

[263]  W. Burke,et al.  The effect of Mycoplasma contamination on the in vitro assay of pyruvate dehydrogenase activity in cultured fibroblasts. , 1978, Clinica chimica acta; international journal of clinical chemistry.

[264]  C Ouzounis,et al.  Novelties from the complete genome of Mycoplasma genitalium , 1996, Molecular microbiology.

[265]  P. F. Smith FATE OF ERGOSTEROL AND CHOLESTANOL IN PLEUROPNEUMONIA-LIKE ORGANISMS , 1962, Journal of bacteriology.

[266]  P. F. Smith Amino acid metabolism by pleuropneumonialike organisms. I. General catabolism. , 1955, Journal of bacteriology.

[267]  H. Muirhead,et al.  A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. , 1988, Science.