Cramer-Rao bounds for matched field tomography and ocean acoustic tomography

Matched field and ocean acoustic tomography concern the estimation of parameters for models of ocean environments using acoustics. Both require full field representations for the observed signals since waveguide effects are important. The authors present Cramer-Rao lower bounds for the attainable accuracy of both methods. These bounds are expressed in terms of the Green's function for the propagation between source and receivers.

[1]  De Lillo,et al.  Advanced calculus with applications , 1982 .

[2]  T. Birdsall,et al.  A demonstration of ocean acoustic tomography , 1982, Nature.

[3]  S. J. Maskell A review of: “OCEAN ACOUSTIC TOMOGRAPHY” , 1996 .

[4]  Henrik Schmidt,et al.  Physics-Imposed Resolution and Robustness Issues in Seismo-Acoustic Parameter Inversion , 1995 .

[5]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[6]  Arthur B. Baggeroer,et al.  An overview of matched field methods in ocean acoustics , 1993 .

[7]  Robert C. Spindel,et al.  A Review of Ocean Acoustic Tomography: 1987–1990 , 1991 .

[8]  H. Bucker Sound Propagation in a Channel with Lossy Boundaries , 1970 .

[9]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[10]  Jeffrey L. Krolik,et al.  A Cramer-Rao bound on acoustic measurement of ocean climate change in the presence of mesoscale sound-speed variability , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[11]  Jeffrey L. Krolik,et al.  Fundamental limits on acoustic source range estimation performance in uncertain ocean channels , 1995 .

[12]  B. B. Bauer,et al.  Fundamentals of acoustics , 1963 .

[13]  Henrik Schmidt SAFARI: Seismo-Acoustic Fast Field Algorithm for Range-Independent Environments. User's Guide , 1988 .

[14]  A. Tolstoy,et al.  ACOUSTIC TOMOGRAPHY VIA MATCHED FIELD PROCESSING , 1991 .

[15]  Leon H. Sibul,et al.  Maximum likelihood estimation of the locations of multiple sources in an acoustic waveguide , 1993 .

[16]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .

[17]  H. Bucker Use of calculated sound fields and matched‐field detection to locate sound sources in shallow water , 1976 .

[18]  Michael B. Porter,et al.  Computational Ocean Acoustics , 1994 .

[19]  Pter M. Daly Cramér-Rao bounds for matched field tomography and ocean acoustic tomography , 1997 .

[20]  Robert C. Spindel,et al.  The Heard Island Feasibility Test , 1992 .

[21]  W. Kuperman,et al.  Matched field processing: source localization in correlated noise as an optimum parameter estimation problem , 1988 .

[22]  Finn B. Jensen,et al.  SNAP: The SACLANTCEN Normal-Mode Acoustic Propagation Model , 1979 .

[23]  F. Middleton,et al.  An underwater acoustic sound velocity data model , 1980 .

[24]  T. C. Yang Modal shading coefficients for high‐resolution source depth localization , 1990 .

[25]  W. Munk,et al.  Observing the ocean in the 1990s , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  Henrik Schmidt,et al.  Parameter Estimation Theory Bounds and the Accuracy of Full Field Inversions , 1995 .

[27]  Van Trees,et al.  Detection, Estimation, and Modulation Theory. Part 1 - Detection, Estimation, and Linear Modulation Theory. , 1968 .

[28]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[29]  Mark Porter,et al.  The KRAKEN normal mode program , 1992 .

[30]  W. Kuperman,et al.  Environmentally tolerant beamforming for high‐resolution matched field processing: Deterministic mismatch , 1990 .

[31]  A. Tolstoy,et al.  Matched Field Processing for Underwater Acoustics , 1992 .

[32]  Carl Wunsch,et al.  Ocean acoustic tomography: a scheme for large scale monitoring , 1979 .

[33]  A. Tolstoy,et al.  Linearization of the matched field processing approach to acoustic tomography , 1991 .