Antibandwidth of Three-Dimensional Meshes

The antibandwidth problem is to label vertices of a graph G=(V,E) bijectively by 0,1,2,...,|V|-1 so that the minimal difference of labels of adjacent vertices is maximised. In this paper we prove an almost exact result for the antibandwidth of three-dimensional meshes. Provided results are extensions of the two-dimensional case and an analogue of the result for the bandwidth of three-dimensional meshes obtained by FitzGerald.

[1]  Reza Akhtar,et al.  Asymptotic Determination of Edge-Bandwidth of Multidimensional Grids and Hamming Graphs , 2008, SIAM J. Discret. Math..

[2]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[3]  Annalisa Massini,et al.  Antibandwidth of complete k-ary trees , 2009, Discret. Math..

[4]  Béla Bollobás,et al.  Matchings and Paths in the Cube , 1997, Discret. Appl. Math..

[5]  Annalisa Massini,et al.  Antibandwidth of Complete k-Ary Trees , 2006, Electron. Notes Discret. Math..

[6]  Dan Pritikin,et al.  On the separation number of a graph , 1989, Networks.

[7]  Oliver Vornberger,et al.  On Some Variants of the Bandwidth Minimization Problem , 1984, SIAM J. Comput..

[8]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[9]  F. Gobel The separation number , 1994 .

[10]  Béla Bollobás,et al.  Erratum to “Parallel machine scheduling with time dependent processing times” [Discrete Appl. Math. 70 (1996) 81–93] , 1997 .

[11]  Garth Isaak,et al.  Hamiltonian powers in threshold and arborescent comparability graphs , 1999, Discret. Math..

[12]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[13]  André Raspaud,et al.  Antibandwidth and cyclic antibandwidth of meshes and hypercubes , 2009, Discret. Math..

[14]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[15]  Paola Cappanera A Survey on Obnoxious Facility Location Problems , 1999 .

[16]  Carl H. FitzGerald Optimal indexing of the vertices of graphs , 1974 .

[17]  Garth Isaak Powers of Hamiltonian paths in interval graphs , 1998, J. Graph Theory.