Investigations on biofilm forming bacteria involved in biocorrosion of carbon steel immerged in real wastewaters

[1]  S. Yuan,et al.  The Influence of the Marine Aerobic Pseudomonas Strain on the Corrosion of 70/30 Cu-Ni Alloy , 2007, ECS Transactions.

[2]  E. Sérvulo,et al.  Biofilm activity on corrosion of API 5L X65 steel weld bead. , 2018, Colloids and surfaces. B, Biointerfaces.

[3]  R. Liang,et al.  Influence of inhibitors on the adhesion of SRB to the stainless steel in circulating cooling water. , 2018, Colloids and surfaces. B, Biointerfaces.

[4]  A. Rajasekar,et al.  Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments , 2017 .

[5]  M. Yılmaz,et al.  Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics , 2016 .

[6]  K. Bohinc,et al.  Metal surface characteristics dictate bacterial adhesion capacity , 2016 .

[7]  J. Whalen,et al.  Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. , 2016, Water research.

[8]  C. Fu,et al.  Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water , 2015 .

[9]  B. Newby,et al.  Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans , 2014 .

[10]  Y. Guan,et al.  The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes. , 2014, Bioresource Technology.

[11]  D. Féron,et al.  Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes. , 2014, Bioelectrochemistry.

[12]  J. Moura,et al.  Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism. , 2014, Bioelectrochemistry.

[13]  I. Beech,et al.  Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines. , 2014, Bioelectrochemistry.

[14]  M. Montemor,et al.  The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides , 2011 .

[15]  J. L. Willett,et al.  Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides , 2011, Biotechnology Letters.

[16]  L. El-Bassi,et al.  Biotransformation of benzothiazole derivatives by the Pseudomonas putida strain HKT554. , 2010, Chemosphere.

[17]  L. Freire,et al.  The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study , 2010 .

[18]  W. Sand,et al.  First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates , 2008 .

[19]  Zhibing Zhang,et al.  Bacterial adhesion and biofilms on surfaces , 2008 .

[20]  R. Karpíšková,et al.  Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation. , 2008, Veterinary microbiology.

[21]  D. Starosvetsky,et al.  Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling , 2008 .

[22]  T. Tolker-Nielsen,et al.  Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. , 2007, Microbiology.

[23]  H. Castaneda,et al.  Impedance distribution at the interface of the API steel X65 in marine environment , 2006 .

[24]  Mizier COT, DBO, DCO, AOX : les paramètres de somme indiquent la qualité du milieu. , 2006 .

[25]  W. Wiebe,et al.  Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. , 2005, Water research.

[26]  J. Qiu,et al.  The impacts of the AOC concentration on biofilm formation under higher shear force condition. , 2004, Journal of biotechnology.

[27]  Jan Sunner,et al.  Biocorrosion: towards understanding interactions between biofilms and metals. , 2004, Current opinion in biotechnology.

[28]  Eberhard Morgenroth,et al.  Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. , 2003, Biotechnology and bioengineering.

[29]  Jui-Sen Peng,et al.  Inactivation and removal of Bacillus cereus by sanitizer and detergent. , 2002, International journal of food microbiology.

[30]  J. Goldberg Biofilms and antibiotic resistance: a genetic linkage , 2002 .

[31]  S. Kjelleberg,et al.  Is there a role for quorum sensing signals in bacterial biofilms? , 2002, Current opinion in microbiology.

[32]  M. Vazquez,et al.  New evidences on the catalase mechanism of microbial corrosion , 2002 .

[33]  W. Sand,et al.  Bioleaching - a result of interfacial processes caused by extracellular polymeric substances (EPS). , 2003 .

[34]  O. Nybroe,et al.  Carbon Limitation Induces ςS-Dependent Gene Expression in Pseudomonas fluorescens in Soil , 2001, Applied and Environmental Microbiology.

[35]  T. R. Bott,et al.  Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation , 1998 .

[36]  E. Chodurek,et al.  The relationship between microbial metabolic activity and biocorrosion of carbon steel. , 1997, Research in microbiology.

[37]  C. J. Oss,et al.  Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells , 1996 .

[38]  L. Boulané-Petermann Processes of bioadhesion on stainless steel surfaces and cleanability: A review with special reference to the food industry. , 1996, Biofouling.

[39]  A. Chakrabarty,et al.  Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa , 1993, Applied and environmental microbiology.

[40]  J. Remon,et al.  Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity , 1990, Applied and environmental microbiology.