Axial Symmetry and Classification of Stationary Solutions of Doi-Onsager Equation on the Sphere with Maier-Saupe Potential

This note serves to provide additional details for the proof of Lemma 3.6 in our paper [Liu, Zhang and Zhang, Comm. Math. Sci., 3(2005), pp.201-218]. Moreover, we will also present an alternative, yet simpler, proof based on arguments in [Wang, Zhang and Zhang, CPAM, 68(2015), no. 8, 1326-1398].

[1]  V. Slastikov,et al.  A Note on the Onsager Model of Nematic Phase Transitions , 2005 .

[2]  Pier Luca Maffettone,et al.  The rigid-rod model for nematic polymers: An analysis of the shear flow problem , 1999 .

[3]  Edriss S. Titi,et al.  Asymptotic States of a Smoluchowski Equation , 2004 .

[4]  Shlomo Engelberg,et al.  Critical Thresholds in Euler-Poisson Equations , 2001, math/0112014.

[5]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[6]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[7]  P. Maffettone,et al.  A description of the liquid-crystalline phase of rodlike polymers at high shear rates , 1989 .

[8]  Valeriy Slastikov,et al.  Critical points of the Onsager functional on a sphere , 2005 .

[9]  Edriss S. Titi,et al.  Remarks on a Smoluchowski equation , 2004 .

[10]  G. Fredrickson The theory of polymer dynamics , 1996 .

[11]  Qi Wang,et al.  Full-tensor alignment criteria for sheared nematic polymers , 2003 .

[12]  Pier Luca Maffettone,et al.  Bifurcation analysis of a molecular model for nematic polymers in shear flows , 1995 .

[13]  The structure of equilibrium solutions of the one-dimensional Doi equation , 2005 .

[14]  Peter Constantin,et al.  Note on the number of steady states for a two-dimensional Smoluchowski equation , 2005 .

[15]  Hailiang Liu,et al.  Critical Thresholds in a Convolution Model for Nonlinear Conservation Laws , 2001, SIAM J. Math. Anal..