Lie Theory: Applications to problems in Mathematical Finance and Economics

This paper is devoted to show and explain some applications of Lie Theory to solve some problems in Economics and Mathematical Finance. So we put forward and discuss mathematical aspects and approaches for several economic problems which have been previously considered in the literature. Besides we also show our advances on this topic, mentioning some open problems for future research.

[1]  C. Lo,et al.  OPTION RISK MEASUREMENT WITH TIME-DEPENDENT PARAMETERS , 2000 .

[2]  E. Jouini,et al.  Option pricing, interest rates and risk management , 2001 .

[3]  Pricing Multi-Asset Financial Derivatives With Time-Dependent Parameters - Lie Algebraic Approach , 2002 .

[4]  T. Bj On the Geometry of Interest Rate Models , 2004 .

[5]  C. Lo,et al.  Constant Elasticity of Variance Option Pricing Model With Time-Dependent Parameters , 2000 .

[6]  Finite Dimensional Markovian Realizations for Forward Price Term Structure Models , 2006 .

[7]  Tomas Björk,et al.  On the construction of finite dimensional realizations for nonlinear forward rate models , 2002, Finance Stochastics.

[8]  Emilio Barucci,et al.  Asset pricing with a forward-backward stochastic differential utility , 2001 .

[9]  T. Björk A Geometric View of Interest Rate Theory , 2000 .

[10]  Lie Groups of Partial Differential Equations and Their Application to the Multidimensional Screening Problems , 2004 .

[11]  R. Sato The Impact of Technical Change on the Holotheticity of Production Functions , 1980 .

[12]  C. Lo,et al.  Lie Algebraic Approach for Pricing Moving Barrier Options with Time-Dependent Parameters , 2006 .

[13]  S. Polidoro A nonlinear PDE in mathematical finance , 2003 .

[14]  Almerico Murli,et al.  Numerical Mathematics and Advanced Applications , 2003 .

[15]  R. Sato Theory of Technical Change and Economic Invariance: Application of Lie Groups , 1999 .

[16]  Peter G. L. Leach,et al.  An optimal system and group-invariant solutions of the Cox-Ingersoll-Ross pricing equation , 2008, Appl. Math. Comput..

[17]  Progreso técnico: una aproximación desde la Teoría de Grupos de Transformaciones de Lie // Technical Progress: an Approach from Lie Transformation Group Theory , 2006 .

[18]  Nizar Touzi,et al.  Paris-Princeton Lectures on Mathematical Finance 2002 , 2003 .

[19]  R. Sato Theory of technical change and economic invariance , 1981 .

[20]  Dieter Bos,et al.  Non-Linear Pricing , 1994 .

[21]  Chi-Fai Lo,et al.  Valuation of financial derivatives with time-dependent parameters: Lie-algebraic approach , 2001 .

[22]  M. Amestrong Multiproduct Nonlinear Pricing , 1993 .

[23]  R. K. Gazizov,et al.  Lie Symmetry Analysis of Differential Equations in Finance , 1998 .

[24]  P. Malliavin Stochastic calculus of variation and hypoelliptic operators , 1978 .

[25]  L. Hörmander Hypoelliptic second order differential equations , 1967 .