Short-Term Recurrence Krylov Subspace Methods for Nearly Hermitian Matrices
暂无分享,去创建一个
Fei Xue | Daniel B. Szyld | Mark Embree | Kirk M. Soodhalter | Josef A. Sifuentes | D. Szyld | M. Embree | Fei Xue | K. Soodhalter
[1] R. Cottle. Manifestations of the Schur complement , 1974 .
[2] M. Rozložník,et al. Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .
[3] A. Wathen,et al. Minimum residual methods for augmented systems , 1998 .
[4] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[5] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[6] Gene H. Golub,et al. A generalized conjugate gradient method for non-symmetric systems of linear equations , 2007, Milestones in Matrix Computation.
[7] Marko Huhtanen,et al. A Matrix Nearness Problem Related to Iterative Methods , 2001, SIAM J. Numer. Anal..
[8] E. Yip. A Note on the Stability of Solving a Rank-p Modification of a Linear System by the Sherman–Morrison–Woodbury Formula , 1986 .
[9] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[10] Valeria Simoncini,et al. On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..
[11] Y. Saad,et al. On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .
[12] Josef Sifuentes,et al. Preconditioned iterative methods for inhomogeneous acoustic scattering applications , 2010 .
[13] Vladimir Rokhlin,et al. On the inverse scattering problem for the Helmholtz equation in one dimension , 1992 .
[14] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[17] J. Sherman,et al. Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .
[18] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[19] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[20] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[21] V. Simoncini,et al. Convergence properties of block GMRES and matrix polynomials , 1996 .
[22] Lothar Reichel,et al. The Arnoldi Process and GMRES for Nearly Symmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[23] William W. Hager,et al. Updating the Inverse of a Matrix , 1989, SIAM Rev..
[24] Josef A. Sifuentes,et al. THE STABILITY OF GMRES CONVERGENCE, WITH APPLICATION TO APPROXIMATE DEFLATION PRECONDITIONING , 2011 .
[25] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[26] O. Widlund. A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .
[27] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[28] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[29] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[30] Christopher C. Paige,et al. A Useful Form of Unitary Matrix Obtained from Any Sequence of Unit 2-Norm n-Vectors , 2009, SIAM J. Matrix Anal. Appl..
[31] Raf Vandebril,et al. An Implicit Multishift $QR$-Algorithm for Hermitian Plus Low Rank Matrices , 2010 .
[32] Tobin A. Driscoll,et al. From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..
[33] Valeria Simoncini,et al. Interpreting IDR as a Petrov--Galerkin Method , 2010, SIAM J. Sci. Comput..
[34] Claude Brezinski. Schur Complements and Applications in Numerical Analysis , 2005 .
[35] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .