Dopamine depletion induced up-regulation of HCN3 enhances rebound excitability of basal ganglia output neurons

Motor symptoms in Parkinson's disease (PD) are associated with complex changes of firing properties in basal ganglia output neurons (BGON). The abnormalities are generally attributed to altered synaptic input and potential post-synaptic mechanisms are currently unknown. Our cell-type selective transcriptome analyses of BGON in the rat 6-hydroxydopamine (6-OHDA) model of PD identified the ion channel HCN3 as a likely contributor to altered neuronal excitability. Quantitative PCR experiments confirmed the HCN3 upregulation in the rat and mouse 6-OHDA models and also demonstrated selectivity of the effect for HCN3. In accordance with the mRNA expression data, in vitro whole cell patch-clamp recordings in BGON showed increased HCN3 current amplitudes and increased rebound excitability in BGON of 6-OHDA treated rats. These data establish HCN3 up-regulation as a novel candidate mechanism that might contribute to the in vivo changes of electrical activity in basal ganglia output neurons of the parkinsonian brain.

[1]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[2]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[3]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[4]  Y. Smith,et al.  The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: A double anterograde labelling study combined with postembedding immunocytochemistry for GABA , 1992, The Journal of comparative neurology.

[5]  Hagai Bergman,et al.  Dopamine Replacement Therapy Reverses Abnormal Synchronization of Pallidal Neurons in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Primate Model of Parkinsonism , 2002, The Journal of Neuroscience.

[6]  A. Dubin,et al.  Neuronal Hyperpolarization-Activated Pacemaker Channels Drive Neuropathic Pain , 2003, The Journal of Neuroscience.

[7]  H. Kita,et al.  Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation , 1987, Brain Research.

[8]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[9]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[10]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[11]  P. Brown Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson's disease , 2003, Movement disorders : official journal of the Movement Disorder Society.

[12]  J. Bolam,et al.  Relationship of Activity in the Subthalamic Nucleus–Globus Pallidus Network to Cortical Electroencephalogram , 2000, The Journal of Neuroscience.

[13]  J. Bolam,et al.  Synaptic Integration of Functionally Diverse Pallidal Information in the Entopeduncular Nucleus and Subthalamic Nucleus in the Rat , 1997, The Journal of Neuroscience.

[14]  C. Wahl-Schott,et al.  HCN channels: Structure, cellular regulation and physiological function , 2009, Cellular and Molecular Life Sciences.

[15]  Jochen Roeper,et al.  ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis , 2001, Nature Neuroscience.

[16]  Martin Biel,et al.  Two pacemaker channels from human heart with profoundly different activation kinetics , 1999, The EMBO journal.

[17]  M. Bevan,et al.  Ionic Mechanisms Underlying Autonomous Action Potential Generation in the Somata and Dendrites of GABAergic Substantia Nigra Pars Reticulata Neurons In Vitro , 2005, The Journal of Neuroscience.

[18]  Hongqing Guo,et al.  Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity , 2003, The Journal of Neuroscience.

[19]  T. Baram,et al.  Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-Activated Channels in an Isoform- and Cell-Specific Manner , 2002, The Journal of Neuroscience.

[20]  J. Bolam,et al.  Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network , 2001, Neuroscience.

[21]  J. Bolam,et al.  Convergent Synaptic Input From the Neostriatum and the Subthalamus Onto Identified Nigrothalamic Neurons in the Rat , 1994, The European journal of neuroscience.

[22]  J A Obeso,et al.  Consequences of Nigrostriatal Denervation on the Functioning of the Basal Ganglia in Human and Nonhuman Primates: An In Situ Hybridization Study of Cytochrome Oxidase Subunit I mRNA , 1997, The Journal of Neuroscience.

[23]  A. Bittner,et al.  Single-cell laser-capture microdissection and RNA amplification. , 2004, Methods in molecular medicine.

[24]  Jochen Roeper,et al.  Differential Expression of the Small-Conductance, Calcium-Activated Potassium Channel SK3 Is Critical for Pacemaker Control in Dopaminergic Midbrain Neurons , 2001, The Journal of Neuroscience.

[25]  Charles J. Wilson,et al.  Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network , 2002, Trends in Neurosciences.

[26]  J. Bolam,et al.  Neurons projecting from the entopeduncular nucleus to the thalamus receive convergent synaptic inputs from the subthalamic nucleus and the neostriatum in the rat , 1994, Brain Research.

[27]  D James Surmeier,et al.  HCN2 and HCN1 Channels Govern the Regularity of Autonomous Pacemaking and Synaptic Resetting in Globus Pallidus Neurons , 2004, The Journal of Neuroscience.

[28]  A. Benabid,et al.  Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat , 2000, Neuroscience.

[29]  Bruce R. Johnson,et al.  Activity-Independent Homeostasis in Rhythmically Active Neurons , 2003, Neuron.

[30]  H. Kita,et al.  Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: electrical membrane properties , 1990, Brain Research.

[31]  H. Bergman,et al.  The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. , 1994, Journal of neurophysiology.

[32]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[33]  D. McCormick,et al.  H-Current Properties of a Neuronal and Network Pacemaker , 1998, Neuron.

[34]  R. Albin End of lines and boxes , 2001, Movement disorders : official journal of the Movement Disorder Society.

[35]  R. Shigemoto,et al.  Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain , 2004, The Journal of comparative neurology.

[36]  F. Gage,et al.  Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats , 2003, Experimental Neurology.

[37]  P. Carlen,et al.  Enhanced Ih depresses rat entopeduncular nucleus neuronal activity from high-frequency stimulation or raised Ke+. , 2008, Journal of neurophysiology.

[38]  A. Benazzouz,et al.  Reduction of apomorphine-induced rotational behaviour by subthalamic lesion in 6-OHDA lesioned rats is associated with a normalization of firing rate and discharge pattern of pars reticulata neurons , 2004, Experimental Brain Research.

[39]  M. Biel,et al.  The Murine HCN3 Gene Encodes a Hyperpolarization-activated Cation Channel with Slow Kinetics and Unique Response to Cyclic Nucleotides* , 2005, Journal of Biological Chemistry.

[40]  Y. Smith,et al.  Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: A double anterograde labelling study , 1991, Neuroscience.

[41]  P. Bonaventure,et al.  Nuclei and subnuclei gene expression profiling in mammalian brain , 2002, Brain Research.

[42]  Thomas Wichmann,et al.  Role of External Pallidal Segment in Primate Parkinsonism: Comparison of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism and Lesions of the External Pallidal Segment , 2004, The Journal of Neuroscience.

[43]  S. Siegelbaum,et al.  Molecular and Functional Heterogeneity of Hyperpolarization-Activated Pacemaker Channels in the Mouse CNS , 2000, The Journal of Neuroscience.

[44]  D. A. Bergstrom,et al.  Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons. , 2002, Journal of neurophysiology.

[45]  D. Hansel,et al.  Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia , 2022 .

[46]  N. Rajakumar,et al.  Parvalbumin‐containing GABAergic neurons in the basal ganglia output system of the rat , 1994, The Journal of comparative neurology.

[47]  G. Arbuthnott,et al.  Electrophysiological properties of nigrothalamic neurons after 6-hydroxydopamine lesions in the rat , 1990, Neuroscience.

[48]  U. Kaupp,et al.  Molecular diversity of pacemaker ion channels. , 2001, Annual review of physiology.

[49]  D. Vasilyev,et al.  Postnatal Development of the Hyperpolarization-Activated Excitatory Current Ih in Mouse Hippocampal Pyramidal Neurons , 2002, The Journal of Neuroscience.

[50]  D. Plenz,et al.  A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus , 1999, Nature.

[51]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations , 1984, The Journal of comparative neurology.

[52]  Haruhiko Kishima,et al.  Functional Recovery in a Primate Model of Parkinson's Disease following Motor Cortex Stimulation , 2004, Neuron.

[53]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[54]  M. Jackson,et al.  Gene expression profiles of laser-captured adjacent neuronal subtypes , 1999, Nature Medicine.

[55]  D. Albe-Fessard,et al.  Changes in substantia nigra pars reticulata activity following lesions of the substantia nigra pars compacta , 1986, Neuroscience Letters.

[56]  G. Percheron,et al.  Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons , 1987, The Journal of comparative neurology.

[57]  M. Biel,et al.  Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. , 2001, European journal of biochemistry.

[58]  Jochen Roeper,et al.  Ih Channels Contribute to the Different Functional Properties of Identified Dopaminergic Subpopulations in the Midbrain , 2002, The Journal of Neuroscience.

[59]  H. Beck,et al.  Enhanced Expression of a Specific Hyperpolarization-Activated Cyclic Nucleotide-Gated Cation Channel (HCN) in Surviving Dentate Gyrus Granule Cells of Human and Experimental Epileptic Hippocampus , 2003, The Journal of Neuroscience.

[60]  D. DiFrancesco,et al.  Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons , 1997, Pflügers Archiv.

[61]  B Bioulac,et al.  Effects of l-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey , 1998, Brain Research.

[62]  B. Liss,et al.  Single‐cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization‐activated cyclic nucleotide‐gated ion channels (Ih) in central neurons , 2000, The European journal of neuroscience.

[63]  I. Briggs,et al.  Inhibitory actions of ZENECA ZD7288 on whole‐cell hyperpolarization activated inward current (If) in guinea‐pig dissociated sinoatrial node cells , 1993, British journal of pharmacology.

[64]  David Hansel,et al.  Late emergence of synchronized oscillatory activity in the pallidum during progressive parkinsonism , 2007, The European journal of neuroscience.

[65]  L. Tremblay,et al.  Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism , 1991, Brain Research.

[66]  F. Hofmann,et al.  Functional Expression of the Human HCN3 Channel* , 2005, Journal of Biological Chemistry.

[67]  E. Vaadia,et al.  Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates , 1998, Trends in Neurosciences.

[68]  M. Chesselet,et al.  Lesions of the dopaminergic nigrostriatal pathway alter preprosomatostatin messenger rna levels in the striatum, the entopeduncular nucleus and the lateral hypothalamus of the rat , 1991, Neuroscience.