58 Collision-Based Computing

[1]  Palash Sarkar,et al.  A brief history of cellular automata , 2000, CSUR.

[2]  Kenneth Steiglitz,et al.  Computing with Solitons: A Review and Prospectus , 2002, Collision-Based Computing.

[3]  Jean-Baptiste Yunès,et al.  Simple New Algorithms Which Solve the Firing Squad Synchronization Problem: A 7-States 4n-Steps Solution , 2007, MCU.

[4]  K. Showalter,et al.  Wave propagation in subexcitable media with periodically modulated excitability. , 2001, Physical review letters.

[5]  Nicolas Ollinger,et al.  The Quest for Small Universal Cellular Automata , 2002, ICALP.

[6]  K Steiglitz,et al.  Information transfer via cascaded collisions of vector solitons. , 2001, Optics letters.

[7]  A. J. Atrubin A One-Dimensional Real-Time Iterative Multiplier , 1965, IEEE Trans. Electron. Comput..

[8]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[9]  Jérôme Olivier Durand-Lose Abstract geometrical computation 4: Small Turing universal signal machines , 2011, Theor. Comput. Sci..

[10]  Turlough Neary,et al.  The complexity of small universal Turing machines: A survey , 2009, Theor. Comput. Sci..

[11]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[12]  Jérôme Olivier Durand-Lose Abstract geometrical computation 3: black holes for classical and analog computing , 2009, Natural Computing.

[13]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[14]  Jacques Mazoyer,et al.  Signals on Cellular Automata , 2002, Collision-Based Computing.

[15]  N. Margolus Physics-like models of computation☆ , 1984 .

[16]  Andrew Adamatzky,et al.  Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium , 2007 .

[17]  Andrew Adamatzky,et al.  On Spiral Glider-Guns In Hexagonal Cellular Automata: Activator-Inhibitor Paradigm , 2006 .

[18]  Jérôme Olivier Durand-Lose Grain Sorting in the One-dimensional Sand Pile Model , 1996, Complex Syst..

[19]  Kenneth Steiglitz,et al.  Signal Standardization in Collision-based Soliton Computing , 2004, Int. J. Unconv. Comput..

[20]  J. Tyson,et al.  Target patterns in a realistic model of the Belousov–Zhabotinskii reaction , 1980 .

[21]  Nicolas Ollinger,et al.  A Particular Universal Cellular Automaton , 2008, CSP.

[22]  Andrew Ilachinski,et al.  Cellular Automata: A Discrete Universe , 2001 .

[23]  Patrick C. Fischer,et al.  Generation of Primes by a One-Dimensional Real-Time Iterative Array , 1965, JACM.

[24]  Kenneth Steiglitz,et al.  When Can Solitons Compute? , 1996, Complex Syst..

[25]  Valentina Beato,et al.  Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise , 2003, SPIE International Symposium on Fluctuations and Noise.

[26]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[27]  Kenneth Steiglitz,et al.  Computing with Solitons , 2009, Encyclopedia of Complexity and Systems Science.

[28]  Jérôme Olivier Durand-Lose Abstract Geometrical Computation and the Linear Blum, Shub and Smale Model , 2007, CiE.

[29]  Paul W. Rendell,et al.  Turing Universality of the Game of Life , 2002, Collision-Based Computing.

[30]  Andrew Adamatzky,et al.  Computing in Spiral Rule Reaction-Diffusion Hexagonal Cellular Automaton , 2006, Complex Syst..

[31]  K Steiglitz,et al.  Time-gated Manakov spatial solitons are computationally universal. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Jean-Philippe Rennard,et al.  Implementation of Logical Functions in the Game of Life , 2004, Collision-Based Computing.

[33]  Jérôme Olivier Durand-Lose Parallel Transient Time of One-Dimensional Sand Pile , 1998, Theor. Comput. Sci..

[34]  Andrew Adamatzky,et al.  Glider-based computing in reaction-diffusion hexagonal cellular automata , 2006 .

[35]  Andrew Adamatzky,et al.  Collision-based computing in Belousov–Zhabotinsky medium , 2004 .

[36]  Seth Lloyd,et al.  Black hole computers. , 2004, Scientific American.

[37]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[38]  James P. Crutchfield,et al.  Evolving Globally Synchronized Cellular Automata , 1995, ICGA.

[39]  Jacques Mazoyer Computations on one-dimensional cellular automata , 2005, Annals of Mathematics and Artificial Intelligence.

[40]  Andrew Wuensche,et al.  Glider Dynamics in 3-Value Hexagonal Cellular Automata: The Beehive Rule , 2005, Int. J. Unconv. Comput..

[41]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .

[42]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[43]  Abraham Waksman,et al.  An Optimum Solution to the Firing Squad Synchronization Problem , 1966, Inf. Control..

[44]  Jérôme Durand-Lose Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model , 2007 .

[45]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[46]  N. Boccara,et al.  Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.