Prediction of the Height of the Water-Conducting Zone Above the Mined Panel in Solid Backfill Mining

Abstract Numerous water inrush disasters have been associated with Chinese coal mines over the past 30 years. Accordingly, solid backfill mining (SBM) has been widely adopted to extract coal resources from beneath aquifers to reduce the magnitude and scope of overburden failure. Therefore, accurate determination of the height of the water-conducting zone associated with SBM is particularly important. The primary factors influencing development of water-conducting zones within solid backfill mines have been quantified in the current study, based on overburden movement and deformation characteristics. Numerical simulation has been used to evaluate the height of water conducting zones with respect to mine heights and backfill ratios. The results have been analyzed via multiple regression, leading to the development of a predictive equation. Field trials undertaken as part of the current study indicate a high level of accuracy with the developed equation.ZusammenfassungIn den letzten 30 Jahren ereigneten sich in chinesischen Kohlenbergbauen zahlreiche katastrophale Wassereinbrüche. Deshalb wurden vielfach Feststoffversatztechnologien (SBM) eingeführt, um Kohle unter Aquiferen zu gewinnen und damit das Ausmaß und die Reichweite von Hangendbrüchen zu verringern. Deshalb ist die genaue Berechnung der Höhe der durch Kohlenabbau unter SBM-Einsatz erwarteten wasserleitenden Zone(HWCZ) besonders wichtig. Basierend auf Bewegungen und Deformationseigenschaften des Hangenden werden in dieser Studie die primären Faktoren quantifiziert, welche die Entwicklung der wasserleitenden Zonen in Gruben mit Feststoffversatz beeinflussen. Mit numerischer Simulation wurde die Höhe der wasserleitenden Zone in Bezug auf die abgebaute Kohlemächtigkeit und die Versatzkennziffer (Versatzmächtigkeit unter Hangendauflast konsolidiert gegen abgebaute Kohlemächtigkeit) berechnet. Die Resultate wurden mit multipler Regression ausgewertet, was zur Entwicklung einer prognostischen Gleichung führte. Feldversuche, welche diese Studie begleiteten, deuten eine hohes Genauigkeitsniveau der entwickelten Gleichung an.ResumenEn China, numerosos desastres de irrupciones de agua han sido asociados a las minas de carbón en los últimos 30 años. Consecuentemente, el relleno de las minas con sólidos (SBM) ha sido ampliamente adoptado para extraer los recursos de carbón en zonas de acuíferos para reducir la magnitud y alcance del manejo de escombreras. Esta es la razón por la que medidas precisas de la altura de la zona conductora de agua (HWCZ) asociada con SBM resultan particularmente importantes. Los factores primarios que influencian el desarrollo de zonas conductoras de agua dentro de las minas rellenas con sólidos han sido cuantificados en este estudio, basado en el movimiento de escombreras y las características de deformación. La simulación numérica ha sido usada para evaluar la altura de las zonas de conducción de agua con respecto a las alturas de las minas y las relaciones de relleno. Los resultados han sido analizados por regresión múltiple, permitiendo el desarrollo de una ecuación predictiva. Los ensayos de campo realizados como parte del presente estudio indican un alto nivel de precisión con la ecuación desarrollada.摘要在过去的30多年里,中国发生了多次煤矿突水事故。固体充填开采(solid backfill mining,SBM)) 能够有效地减少顶板覆岩破坏程度,已被广泛用于含水层下煤炭开采。因此,准确预测充填开采条件下导水裂隙带高度尤为重要。本文利用顶板覆岩运动与变形规律,定量分析了影响导水裂隙带发育高度的各种因素,采用数值模拟手段研究了回采高度、采空区固体充填比与导水裂隙带高度之间的变化关系,通过多元回归方法建立了导裂隙带高度预测公式。野外试验证明了充填开采条件下导水裂隙带高度预测公式的适用性和可靠性。

[1]  Baohong Shen,et al.  Coal mining under aquifers in China: a case study , 2004 .

[2]  Rock Mechanics Elements Of Coal Mine Design , 1976 .

[3]  Guo Guang-li,et al.  Development Status of Backfilling Technology Using Raw Waste in Coal Mining , 2009 .

[4]  Xiexing Miao,et al.  The height of fractured water-conducting zone in undermined rock strata , 2011 .

[5]  Hu Xiaojuan,et al.  Index of multiple factors and expected height of fully mechanized water flowing fractured zone , 2012 .

[6]  Christine Ehlig-Economides,et al.  A fully coupled method to model fracture permeability change in naturally fractured reservoirs , 2011 .

[7]  Neil Styler Prediction Of Inter-Strata Movements Above Longwall Faces , 1984 .

[8]  Li Fengming,et al.  MONITORING ANALYSIS OF FISSURE DEVELOPMENT EVOLUTION AND HEIGHT OF OVERBURDEN FAILURE OF HIGH TENSION FULLY-MECHANIZED CAVING MINING , 2011 .

[9]  Daigoro Hayashi,et al.  Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh, with special reference to the Barapukuria coal mine , 2009 .

[10]  Christopher Mark,et al.  Behavior of simulated longwall gob material , 1993 .

[11]  Zhou Yue-jin,et al.  Strata pressure behavior by raw waste backfilling with fully-mechanized coal minning technology , 2010 .

[12]  D. Elsworth,et al.  Some aspects of mining under aquifers in China , 1990 .

[13]  Wang Fang-tian Back analysis of mining induced responses on the basis of goaf compaction theory , 2013 .

[14]  Qiang Zhang,et al.  BACKFILLING TECHNOLOGY OF SUBSTITUTING WASTE AND FLY ASH FOR COAL UNDERGROUND IN CHINA COAL MINING AREA , 2011 .

[15]  H. Yanli,et al.  Overlying strata movement law in fully mechanized coal mining and backfilling longwall face by similar physical simulation , 2011 .

[16]  Jonny Rutqvist,et al.  Stress-dependent permeability of fractured rock masses: A numerical study , 2004 .

[17]  Guo Guang-li,et al.  Study on waste-filling method and technology in fully-mechanized coal mining , 2010 .

[18]  X. Miao,et al.  The Challenges of Reusing Mining and Mineral-Processing Wastes , 2012, Science.

[19]  Jian Li,et al.  An investigation of surface deformation after fully mechanized, solid back fill mining , 2012 .

[20]  Raghu N Singh,et al.  Analytic calculations of hydraulic conductivities above longwall coal faces , 1986 .