Generalized Power Domination: Propagation Radius and Sierpiński Graphs

The recently introduced concept of k-power domination generalizes domination and power domination, the latter concept being used for monitoring an electric power system. The k-power domination problem is to determine a minimum size vertex subset S of a graph G such that after setting X=N[S], and iteratively adding to X vertices x that have a neighbour v in X such that at most k neighbours of v are not yet in X, we get X=V(G). In this paper the k-power domination number of Sierpiński graphs is determined. The propagation radius is introduced as a measure of the efficiency of power dominating sets. The propagation radius of Sierpiński graphs is obtained in most of the cases.

[1]  D. T. Lee,et al.  Power Domination in Circular-Arc Graphs , 2011, Algorithmica.

[2]  C. Sangwin The Tower of Hanoi—Myths and Maths by A. Hinz, S. Klavžar, U. Milutinović, and C. Petr , 2015, The Mathematical Intelligencer.

[3]  S. Lipscomb Fractals and Universal Spaces in Dimension Theory , 2008 .

[4]  Stefan Richter,et al.  Parameterized power domination complexity , 2006, Inf. Process. Lett..

[5]  Michael A. Henning,et al.  A note on power domination in grid graphs , 2006, Discret. Appl. Math..

[6]  André Raspaud,et al.  Generalized power domination of graphs , 2012, Discret. Appl. Math..

[7]  Guanghui Wang,et al.  The Linear t-Colorings of Sierpiński-Like Graphs , 2014, Graphs Comb..

[8]  Daniele Parisse,et al.  On Some Metric Properties of the Sierpinski Graphs S(n, k) , 2009, Ars Comb..

[9]  Guojun Li,et al.  The hamiltonicity and path t-coloring of Sierpiński-like graphs , 2012, Discret. Appl. Math..

[10]  Min Zhao,et al.  Power domination in block graphs , 2006, Theor. Comput. Sci..

[11]  Sandi Klavzar,et al.  The Tower of Hanoi - Myths and Maths , 2013 .

[12]  André Raspaud,et al.  Generalized Power Domination in Regular Graphs , 2013, SIAM J. Discret. Math..

[13]  Ashkan Aazami,et al.  Domination in graphs with bounded propagation: algorithms, formulations and hardness results , 2008, J. Comb. Optim..

[14]  Guanghui Wang,et al.  Shortest paths in Sierpiński graphs , 2014, Discret. Appl. Math..

[15]  Sandi Klavÿzar,et al.  On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension , 2013 .

[16]  Jung-Sheng Fu,et al.  Hamiltonian connectivity of the WK-recursive network with faulty nodes , 2008, Inf. Sci..

[17]  S. Klavžar,et al.  1-perfect codes in Sierpiński graphs , 2002, Bulletin of the Australian Mathematical Society.

[18]  Lenwood S. Heath,et al.  The PMU Placement Problem , 2005, SIAM J. Discret. Math..

[19]  Andreas M. Hinz,et al.  The Average Eccentricity of Sierpiński Graphs , 2012, Graphs Comb..

[20]  S. Klavžar,et al.  Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .

[21]  T. Baldwin,et al.  Power system observability with minimal phasor measurement placement , 1993 .

[22]  C. Sanges,et al.  A recursively scalable network VLSI implementation , 1988, Future Gener. Comput. Syst..

[23]  Yue-Li Wang,et al.  The Hub Number of Sierpiński-Like Graphs , 2011, Theory of Computing Systems.

[24]  Sylvain Gravier,et al.  New results on variants of covering codes in Sierpiński graphs , 2012, Des. Codes Cryptogr..

[25]  Andreas M. Hinz,et al.  Coloring Hanoi and Sierpiński graphs , 2012, Discret. Math..

[26]  Min Zhao,et al.  Power domination in graphs , 2006, Discret. Math..

[27]  Paul Dorbec,et al.  Power Domination in Product Graphs , 2008, SIAM J. Discret. Math..

[28]  Michael A. Henning,et al.  Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..

[29]  Tomaz Pisanski,et al.  Growth in Repeated Truncations of Maps , 2000 .

[30]  Ashkan Aazami,et al.  Approximation Algorithms and Hardness for Domination with Propagation , 2007, SIAM J. Discret. Math..

[31]  A. M. Hinz,et al.  Sierpiński graphs as spanning subgraphs of Hanoi graphs , 2013 .

[32]  Rolf Niedermeier,et al.  Improved Algorithms and Complexity Results for Power Domination in Graphs , 2005, Algorithmica.