Generalized Power Domination: Propagation Radius and Sierpiński Graphs
暂无分享,去创建一个
[1] D. T. Lee,et al. Power Domination in Circular-Arc Graphs , 2011, Algorithmica.
[2] C. Sangwin. The Tower of Hanoi—Myths and Maths by A. Hinz, S. Klavžar, U. Milutinović, and C. Petr , 2015, The Mathematical Intelligencer.
[3] S. Lipscomb. Fractals and Universal Spaces in Dimension Theory , 2008 .
[4] Stefan Richter,et al. Parameterized power domination complexity , 2006, Inf. Process. Lett..
[5] Michael A. Henning,et al. A note on power domination in grid graphs , 2006, Discret. Appl. Math..
[6] André Raspaud,et al. Generalized power domination of graphs , 2012, Discret. Appl. Math..
[7] Guanghui Wang,et al. The Linear t-Colorings of Sierpiński-Like Graphs , 2014, Graphs Comb..
[8] Daniele Parisse,et al. On Some Metric Properties of the Sierpinski Graphs S(n, k) , 2009, Ars Comb..
[9] Guojun Li,et al. The hamiltonicity and path t-coloring of Sierpiński-like graphs , 2012, Discret. Appl. Math..
[10] Min Zhao,et al. Power domination in block graphs , 2006, Theor. Comput. Sci..
[11] Sandi Klavzar,et al. The Tower of Hanoi - Myths and Maths , 2013 .
[12] André Raspaud,et al. Generalized Power Domination in Regular Graphs , 2013, SIAM J. Discret. Math..
[13] Ashkan Aazami,et al. Domination in graphs with bounded propagation: algorithms, formulations and hardness results , 2008, J. Comb. Optim..
[14] Guanghui Wang,et al. Shortest paths in Sierpiński graphs , 2014, Discret. Appl. Math..
[15] Sandi Klavÿzar,et al. On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension , 2013 .
[16] Jung-Sheng Fu,et al. Hamiltonian connectivity of the WK-recursive network with faulty nodes , 2008, Inf. Sci..
[17] S. Klavžar,et al. 1-perfect codes in Sierpiński graphs , 2002, Bulletin of the Australian Mathematical Society.
[18] Lenwood S. Heath,et al. The PMU Placement Problem , 2005, SIAM J. Discret. Math..
[19] Andreas M. Hinz,et al. The Average Eccentricity of Sierpiński Graphs , 2012, Graphs Comb..
[20] S. Klavžar,et al. Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .
[21] T. Baldwin,et al. Power system observability with minimal phasor measurement placement , 1993 .
[22] C. Sanges,et al. A recursively scalable network VLSI implementation , 1988, Future Gener. Comput. Syst..
[23] Yue-Li Wang,et al. The Hub Number of Sierpiński-Like Graphs , 2011, Theory of Computing Systems.
[24] Sylvain Gravier,et al. New results on variants of covering codes in Sierpiński graphs , 2012, Des. Codes Cryptogr..
[25] Andreas M. Hinz,et al. Coloring Hanoi and Sierpiński graphs , 2012, Discret. Math..
[26] Min Zhao,et al. Power domination in graphs , 2006, Discret. Math..
[27] Paul Dorbec,et al. Power Domination in Product Graphs , 2008, SIAM J. Discret. Math..
[28] Michael A. Henning,et al. Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..
[29] Tomaz Pisanski,et al. Growth in Repeated Truncations of Maps , 2000 .
[30] Ashkan Aazami,et al. Approximation Algorithms and Hardness for Domination with Propagation , 2007, SIAM J. Discret. Math..
[31] A. M. Hinz,et al. Sierpiński graphs as spanning subgraphs of Hanoi graphs , 2013 .
[32] Rolf Niedermeier,et al. Improved Algorithms and Complexity Results for Power Domination in Graphs , 2005, Algorithmica.