On performance improvement of the SOMA swarm based algorithm and its complex network duality

In this participation, we are continuing in our research on swarm based algorithm SOMA - Self Organized Migrating Algorithm and its use on problems defined in Competition track at WCCI 2016. In this paper we described SOMA algorithm, its conversion into complex network and we present modification called SOMARemove. Also we compare classical SOMA algoritm with SOMARemove on the first 8 functions of CEC15 benchmark in order to test the increase of the performance of new modification.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[3]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[4]  Ivan Zelinka,et al.  Self-Organizing Migrating Algorithm: Methodology and Implementation , 2016 .

[5]  Ivan Zelinka,et al.  On Analysis and Performance Improvement of Evolutionary Algorithms Based on its Complex Network Structure - A Summary Overview , 2015, MICAI.

[6]  Ivan Zelinka,et al.  Self-Organizing Migrating Algorithm , 2016 .

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  Magdalena Metlicka,et al.  Ensemble centralities based adaptive Artificial Bee algorithm , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[9]  Ivan Zelinka,et al.  Differential Evolution Enhanced by the Closeness Centrality: Initial Study , 2015, 2015 International Conference on Intelligent Networking and Collaborative Systems.

[10]  Roman Senkerik,et al.  Evolutionary Dynamics as The Structure of Complex Networks , 2013, Handbook of Optimization.

[11]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[12]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[13]  Ivan Zelinka,et al.  A survey on evolutionary algorithms dynamics and its complexity - Mutual relations, past, present and future , 2015, Swarm Evol. Comput..

[14]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[15]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[16]  Z. N. Zakaria,et al.  Firefly Algorithm technique for solving Economic Dispatch problem , 2012, 2012 IEEE International Power Engineering and Optimization Conference Melaka, Malaysia.

[17]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[18]  Roman Senkerik,et al.  Do Evolutionary Algorithm Dynamics Create Complex Network Structures? , 2011, Complex Syst..

[19]  Michal Pluhacek,et al.  Evolutionary algorithms dynamics and its hidden complex network structures , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[20]  Ivan Zelinka,et al.  SOMA—Self-organizing Migrating Algorithm , 2016 .

[21]  David Corne,et al.  Evolutionary Computation In Bioinformatics , 2003 .

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  Tomás Fabián,et al.  Differential evolution dynamics analysis by complex networks , 2015, Soft Computing.