Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex

Abstract The dorsal, parietal visual stream is activated when seeing objects, but the exact nature of parietal object representations is still under discussion. Here we test 2 specific hypotheses. First, parietal cortex is biased to host some representations more than others, with a different bias compared with ventral areas. A prime example would be object action representations. Second, parietal cortex forms a general multiple‐demand network with frontal areas, showing similar task effects and representational content compared with frontal areas. To differentiate between these hypotheses, we implemented a human neuroimaging study with a stimulus set that dissociates associated object action from object category while manipulating task context to be either action‐ or category‐related. Representations in parietal as well as prefrontal areas represented task‐relevant object properties (action representations in the action task), with no sign of the irrelevant object property (category representations in the action task). In contrast, irrelevant object properties were represented in ventral areas. These findings emphasize that human parietal cortex does not preferentially represent particular object properties irrespective of task, but together with frontal areas is part of a multiple‐demand and content‐rich cortical network representing task‐relevant object properties.

[1]  H. Liepmann,et al.  Das Krankheitsbild der Apraxie (“motorischen Asymbolie”) auf Grund eines Falles von einseitiger Apraxie (Fortsetzung.) pp. 102–116 , 1900 .

[2]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[3]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[4]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[6]  M. Goodale,et al.  The visual brain in action , 1995 .

[7]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[8]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[9]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[10]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[11]  J. Duncan An adaptive coding model of neural function in prefrontal cortex , 2001 .

[12]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[13]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[14]  R. Adolphs,et al.  NEURAL CORRELATES OF CONCEPTUAL KNOWLEDGE FOR ACTIONS , 2003, Cognitive neuropsychology.

[15]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[16]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[17]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[18]  JamesW. Lewis Cortical Networks Related to Human Use of Tools , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[19]  Murray Grossman,et al.  Left Inferior Parietal Representations for Skilled Hand-Object Interactions: Evidence from Stroke and Corticobasal Degeneration , 2007, Cortex.

[20]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[21]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[22]  Alexander Borst,et al.  How does Nature Program Neuron Types? , 2008, Front. Neurosci..

[23]  Johan Wagemans,et al.  Perceived Shape Similarity among Unfamiliar Objects and the Organization of the Human Object Vision Pathway , 2008, The Journal of Neuroscience.

[24]  Sabine Kastner,et al.  Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[25]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[26]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[27]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[28]  Laurel J Buxbaum,et al.  Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke. , 2010, Brain : a journal of neurology.

[29]  Hans P. Op de Beeck,et al.  Against hyperacuity in brain reading: Spatial smoothing does not hurt multivariate fMRI analyses? , 2010, NeuroImage.

[30]  Marlene Behrmann,et al.  Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis , 2011, Proceedings of the National Academy of Sciences.

[31]  D. Tranel,et al.  Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions , 2012, Cortex.

[32]  A. Caramazza,et al.  Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. , 2012, Journal of neurophysiology.

[33]  N. Kriegeskorte,et al.  Inverse MDS: Inferring Dissimilarity Structure from Multiple Item Arrangements , 2012, Front. Psychology.

[34]  John Duncan,et al.  Global Increase in Task-related Fronto-parietal Activity after Focal Frontal Lobe Lesion , 2013, Journal of Cognitive Neuroscience.

[35]  Yong He,et al.  BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics , 2013, PloS one.

[36]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[37]  Brice A. Kuhl,et al.  Dissociable Neural Mechanisms for Goal-Directed Versus Incidental Memory Reactivation , 2013, The Journal of Neuroscience.

[38]  Nancy Kanwisher,et al.  Broad domain generality in focal regions of frontal and parietal cortex , 2013, Proceedings of the National Academy of Sciences.

[39]  David J. Freedman,et al.  Task Dependence of Visual and Category Representations in Prefrontal and Inferior Temporal Cortices , 2014, The Journal of Neuroscience.

[40]  L. Buxbaum,et al.  Critical brain regions for tool-related and imitative actions: a componential analysis. , 2014, Brain : a journal of neurology.

[41]  In search for the core of apraxia , 2014, Cortex.

[42]  Dwight J. Kravitz,et al.  Task context impacts visual object processing differentially across the cortex , 2014, Proceedings of the National Academy of Sciences.

[43]  Li Su,et al.  A Toolbox for Representational Similarity Analysis , 2014, PLoS Comput. Biol..

[44]  Ben M. Crittenden,et al.  Task Difficulty Manipulation Reveals Multiple Demand Activity but no Frontal Lobe Hierarchy , 2012, Cerebral cortex.

[45]  A. Caramazza,et al.  Decoding representations of face identity that are tolerant to rotation. , 2014, Cerebral cortex.

[46]  Spencer Kellis,et al.  Hand Shape Representations in the Human Posterior Parietal Cortex , 2015, The Journal of Neuroscience.

[47]  J. Duncan,et al.  Discrimination of Visual Categories Based on Behavioral Relevance in Widespread Regions of Frontoparietal Cortex , 2015, The Journal of Neuroscience.

[48]  Anina N. Rich,et al.  Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices , 2015, NeuroImage.

[49]  H. P. Op de Beeck,et al.  Dissociations and Associations between Shape and Category Representations in the Two Visual Pathways , 2015, The Journal of Neuroscience.

[50]  J. D. Connolly,et al.  Representational content of occipitotemporal and parietal tool areas , 2016, Neuropsychologia.

[51]  David J. Freedman,et al.  Neuronal Mechanisms of Visual Categorization: An Abstract View on Decision Making. , 2016, Annual review of neuroscience.

[52]  Su Keun Jeong,et al.  Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex , 2016, The Journal of Neuroscience.

[53]  David C. Plaut,et al.  ‘What’ Is Happening in the Dorsal Visual Pathway , 2016, Trends in Cognitive Sciences.

[54]  Samuel A. Nastase,et al.  Attention Selectively Reshapes the Geometry of Distributed Semantic Representation , 2016, bioRxiv.

[55]  P. Nardi Critical , 2018, Theoretical Models and Processes of Literacy.