Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra.

We present a sophisticated radiative transfer code for modeling outgoing IR radiation from planetary atmospheres and, conversely, for retrieving atmospheric properties from high-resolution nadir-observed spectra. The forward model is built around a doubling-adding routine and calculates, in a spherical refractive geometry, the outgoing radiation emitted by the Earth and the atmosphere containing one layer of aerosol. The inverse model uses an optimal estimation approach and can simultaneously retrieve atmospheric trace gases, aerosol effective radius, and concentration. It is different from existing codes, as most forward codes dealing with multiple scattering assume a plane-parallel atmosphere, and as for the retrieval, it does not rely on precalculated spectra, the use of microwindows, or two-step retrievals. The simultaneous retrieval on a broad spectral range exploits the full potential of current state-of-the-art hyperspectral IR sounders, such as AIRS and IASI, and should be particularly useful in studying major pollution events. We present five example retrievals of IASI spectra observed in the range from 800 to 1200 cm(-1) above dust, volcanic ash, sulfuric acid, ice particles, and biomass burning aerosols.

[1]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[2]  Richard Siddans,et al.  Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers , 2009 .

[3]  Cathy Clerbaux,et al.  Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires , 2009 .

[4]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[5]  Jonathan P. Taylor,et al.  Radiative properties and direct effect of Saharan dust measured by the C‐130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum , 2003 .

[6]  Alfred J Prata,et al.  Infrared radiative transfer calculations for volcanic ash clouds , 1989 .

[7]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[8]  Alain Chedin,et al.  Retrieving the effective radius of Saharan dust coarse mode from AIRS , 2005 .

[9]  Frédéric Parol,et al.  Information Content of AVHRR Channels 4 and 5 with Respect to the Effective Radius of Cirrus Cloud Particles , 1991 .

[10]  I. M. Watsona,et al.  Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer , 2004 .

[11]  D. R. Worsnop,et al.  FREQUENCY-DEPENDENT OPTICAL CONSTANTS OF WATER ICE OBTAINED DIRECTLY FROM AEROSOL EXTINCTION SPECTRA , 1995 .

[12]  Lieven Clarisse,et al.  IASI measurements of reactive trace species in biomass burning plumes , 2009 .

[13]  Alain Chedin,et al.  Dust altitude and infrared optical depth from AIRS , 2004 .

[14]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[15]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[16]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[17]  Oleg Dubovik,et al.  Modeling of the scattering and radiative properties of nonspherical dust-like aerosols , 2007 .

[18]  M. McCormick,et al.  Satellite studies of the stratospheric aerosol , 1979 .

[19]  Owen B. Toon,et al.  Optical properties of some terrestrial rocks and glasses. , 1973 .

[20]  Simon A. Carn,et al.  The Unexpected Awakening of Chaitén Volcano, Chile , 2009 .

[21]  Fuzhong Weng,et al.  NOTES AND CORRESPONDENCE Advanced Doubling-Adding Method for Radiative Transfer in Planetary Atmospheres , 2006 .

[22]  J. Penner,et al.  Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols , 1997 .

[23]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[24]  D. Hofmann,et al.  Sulfuric Acid Droplet Formation and Growth in the Stratosphere After the 1982 Eruption of El Chich�n , 1983, Science.

[25]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[26]  Yingxin Gu,et al.  Retrieval of mass and sizes of particles in sandstorms using two MODIS IR bands: A case study of April 7, 2001 sandstorm in China , 2003 .

[27]  Lieven Clarisse,et al.  The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements , 2010 .

[28]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[29]  F. Volz,et al.  Infrared optical constants of ammonium sulfate, sahara dust, volcanic pumice, and flyash. , 1973, Applied optics.

[30]  Shepard A. Clough,et al.  Near micron‐sized cirrus cloud particles in high‐resolution infrared spectra: An orographic case study , 2003 .

[31]  P. Barbosa,et al.  A MODIS assessment of the summer 2007 extent burned in Greece , 2008 .

[32]  K. P. Birch,et al.  LETTER TO THE EDITOR: Correction to the Updated Edln Equation for the Refractive Index of Air , 1994 .

[33]  M. Andreae,et al.  Atmospheric Chemistry and Physics Discussions Interactive comment on “ Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber : results from the EFEU campaign , 2007 .

[34]  V. E. Cachorro,et al.  New Improvements for Mie Scattering Calculations , 1991 .

[35]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[36]  A. Eldering,et al.  Simulations of the accuracy in retrieving stratospheric aerosol effective radius, composition, and loading from infrared spectral transmission measurements. , 2006, Applied optics.

[37]  S. Ackerman Remote sensing aerosols using satellite infrared observations , 1997 .

[38]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[39]  Scott E. Hannon,et al.  Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy) , 2005 .

[40]  In situ measurements of effective diameter and effective droplet number concentration , 1999 .

[41]  Claudia Emde,et al.  A polarized discrete ordinate scattering model for simulations of limb and nadir long‐wave measurements in 1‐D/3‐D spherical atmospheres , 2004 .

[42]  Boundary layer aerosol retrieval from thermal infrared nadir sounding – Preliminary results , 2006 .

[43]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[44]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[45]  Irina N. Sokolik,et al.  The spectral radiative signature of wind‐blown mineral dust: Implications for remote sensing in the thermal IR region , 2002 .

[46]  Peter V. Hobbs,et al.  Airborne measurements of particle and gas emissions from the 1990 volcanic eruptions of Mount Redoubt , 1991 .

[47]  L. Larrabee Strow,et al.  Infrared dust spectral signatures from AIRS , 2006 .

[48]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[49]  D. Deirmendjian Electromagnetic scattering on spherical polydispersions , 1969 .

[50]  Alexander Smirnov,et al.  Comparison of size and morphological measurements of coarse mode dust particles from Africa , 2003 .

[51]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[52]  Menghua Wang,et al.  Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective , 2009 .

[53]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[54]  J. Hansen,et al.  Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission , 2007 .

[55]  A. Lambert,et al.  Infrared absorption by volcanic stratospheric aerosols observed by ISAMS , 1993 .

[56]  Kuo-Nan Liou,et al.  Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra , 2009 .

[57]  W. Wiscombe The Delta–M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions , 1977 .

[58]  H. Du,et al.  Mie-scattering calculation. , 2004, Applied optics.

[59]  Owen B. Toon,et al.  Infrared optical constants of low‐temperature H2SO4 solutions representative of stratospheric sulfate aerosols , 1998 .

[60]  EUMETSAT Am Kavalleriesand,et al.  THE OPERATIONAL IASI LEVEL 2 PROCESSOR , 2003 .

[61]  D. Turner Systematic errors inherent in the current modeling of the reflected downward flux term used by remote sensing models. , 2004, Applied optics.

[62]  Maurice Herman,et al.  Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model , 2005 .

[63]  Cyril Moulin,et al.  Improvement of the detection of desert dust over the Sahel using METEOSAT IR imagery , 2006 .

[64]  W. Paul Menzel,et al.  Retrieval of Cloud Microphysical Properties from MODIS and AIRS , 2005 .

[65]  D. Tanré,et al.  Evaluation of PARASOL aerosol retrieval over North East Asia , 2008 .

[66]  Cathy Clerbaux,et al.  Retrieval and characterization of ozone vertical profiles from a thermal infrared nadir sounder , 2005 .

[67]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[68]  Qiang Fu,et al.  Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths. , 1999 .

[69]  Lieven Clarisse,et al.  Monitoring of atmospheric composition using the thermal infrared IASI/METOP sounder , 2009 .

[70]  Lieven Clarisse,et al.  Tracking and quantifying volcanic SO 2 with IASI, the September 2007 eruption at Jebel at Tair , 2008 .

[71]  A. Prata,et al.  Ash and sulfur dioxide in the 2008 eruptions of Okmok and Kasatochi: Insights from high spectral resolution satellite measurements , 2010 .

[72]  William I. Rose,et al.  Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5 , 1994 .

[73]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[74]  R. A. Sutherland,et al.  Optical Properties of Organic-based Aerosols Produced by Burning Vegetation , 1991 .

[75]  A. Kokhanovsky,et al.  Satellite Aerosol Remote Sensing Over Land , 2009 .

[76]  Lieven Clarisse,et al.  Detection of volcanic SO2, ash, and H2SO4 using the Infrared Atmospheric Sounding Interferometer (IASI) , 2010 .

[77]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[78]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[79]  Didier Tanré,et al.  Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO , 2009 .

[80]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .