Solar cell efficiency tables (version 35)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2009 are reviewed. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Rommel Noufi,et al.  Characterization of 19.9%-efficient CIGS absorbers , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[2]  M. Green,et al.  20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race , 1997 .

[3]  Kim W. Mitchell,et al.  Single and tandem junction CuInSe/sub 2/ cell and module technology , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[4]  Liyuan Han,et al.  High Efficiency of Dye-Sensitized Solar Cell and Module , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[5]  K. Emery,et al.  Outdoor Measurements for High Efficiency Solar Cell Assemblies , 2009 .

[6]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[7]  D. L. King,et al.  Solar cell efficiency tables (version 22) , 1996, Renewable Energy.

[8]  T. Takamoto,et al.  High-efficiency monolithic InGaP/GaAs tandem solar cells with improved top-cell back-surface-field layers , 1995, Seventh International Conference on Indium Phosphide and Related Materials.

[9]  D. C. Law,et al.  Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells , 2009 .

[10]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[11]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[12]  Hiroaki Morikawa,et al.  Honeycomb-Structured Multi-Crystalline Silicon Solar Cells With 18.6% Efficiency Via Industrially Applicable Laser Process , 2008 .

[13]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[14]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[15]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[16]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[17]  D. Pier,et al.  SINGLE AND TANDEM JUNCTION CuInSe2 CELL AND MODULE TECHNOLOGY , 1988 .

[18]  Subhendu Guha,et al.  Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[19]  S. Wenham,et al.  Mass production of the innovative PLUTO solar cell technology , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[20]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[21]  Ralf B. Bergmann,et al.  Advances in monocrystalline Si thin film solar cells by layer transfer , 2002 .

[22]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[23]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[24]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[25]  S. Guha,et al.  Status of nc-Si:H Solar Cells at United Solar and Roadmap for Manufacturing a-Si:H and nc-Si:H Based Solar Panels , 2007 .

[26]  V. S. Sundaram,et al.  Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications , 1990, IEEE Conference on Photovoltaic Specialists.

[27]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[28]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[29]  H. Sakata,et al.  Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[30]  Kenji Yamamoto,et al.  Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature , 1998 .

[31]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[32]  Fouad Kiamilev,et al.  Improved outdoor measurements for Very High Efficiency Solar Cell sub-modules , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[33]  E. Mopas,et al.  Large area Apollo(R) module performance and reliability , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[34]  Gerald Siefer,et al.  DEVELOPMENT OF HIGH-EFFICIENCY MECHANICALLY STACKED GaInP/GaInAs-GaSb TRIPLE- JUNCTION CONCENTRATOR SOLAR CELLS , 2001 .

[35]  Paul A. Basore,et al.  Pilot production of thin-film crystalline silicon on glass modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[36]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .