A high‐order scheme for the incompressible Navier–Stokes equations with open boundary condition

SUMMARY We present a numerical scheme to solve the incompressible Navier–Stokes equations with open boundary condition. After replacing the incompressibility constraint by the pressure Poisson equation, the key is how to give an appropriate boundary condition for the pressure Poisson equation. We propose a new boundary condition for the pressure on the open boundary. Some numerical experiments are presented to verify the accuracy and stability of scheme. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[2]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[3]  Jie Shen,et al.  Error Analysis of Pressure-Correction Schemes for the Time-Dependent Stokes Equations with Open Boundary Conditions , 2005, SIAM J. Numer. Anal..

[4]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[5]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[6]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[7]  Hans Johnston,et al.  Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term , 2004 .

[8]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[9]  Jie Shen,et al.  Error analysis of fully discrete velocity-correction methods for incompressible flows , 2008, Math. Comput..

[10]  Mejdi Azaïez,et al.  Improvements on open and traction boundary conditions for Navier-Stokes time-splitting methods , 2011, J. Comput. Phys..

[11]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[12]  Robert L. Pego,et al.  Stability and convergence of efficient Navier‐Stokes solvers via a commutator estimate , 2007 .

[13]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[14]  Zhiqiang Sheng,et al.  An efficient numerical method for the equations of steady and unsteady flows of homogeneous incompressible Newtonian fluid , 2011, J. Comput. Phys..

[15]  Robert L. Pego,et al.  Error estimates for finite-element Navier-Stokes solvers without standard Inf-Sup conditions , 2009 .

[16]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[17]  Jan Nordström,et al.  Boundary conditions for a divergence free velocity-pressure formulation of the Navier-Stokes equations , 2007, J. Comput. Phys..

[18]  Olivier Pironneau,et al.  Pressure boundary condition for the time‐dependent incompressible Navier–Stokes equations , 2006 .

[19]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[20]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[21]  N. Anders Petersson,et al.  Stability of pressure boundary conditions for Stokes and Navier-Stokes equations , 2001 .

[22]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[23]  Jian-Guo Liu,et al.  Stable and accurate pressure approximation for unsteady incompressible viscous flow , 2010, J. Comput. Phys..

[24]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[25]  Jie Liu,et al.  Open and traction boundary conditions for the incompressible Navier-Stokes equations , 2009, J. Comput. Phys..

[26]  Jie Shen,et al.  A new class of truly consistent splitting schemes for incompressible flows , 2003 .